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Abstract—This paper proposes a Lyapunov optimization-based 
online distributed (LOOD) algorithmic framework for active distri-
bution networks (ADNs) with numerous photovoltaic inverters and 
inverter air conditionings (IACs). In the proposed scheme, ADNs can 
track an active power setpoint reference at the substation in response 
to transmission-level requests while concurrently minimizing the so-
cial utility loss and ensuring the security of voltages. Conventional dis-
tributed optimization methods are rarely feasible to track the optimal 
solutions in fast variable environments using a fine-grained sampling 
interval where the underlying optimization problem evolves with the 
iterations of the algorithms. In contrast, based on the framework of 
online convex optimization (OCO), the developed approach uses a dis-
tributed algebraic update to compute the next round decisions relying 
on the current feedback of measurements. Notably, the time-coupling 
constraints of IACs are decoupled for online implementation with 
Lyapunov optimization technique. An incentive scheme is tailored to 
coordinate the customer-owned assets in lieu of the direct control 
from network operators. Optimality and convergency are character-
ized analytically. Finally, we corroborate the proposed method on a 
modified version of 33-node test feeder. Benchmark tests show that 
the proposed method is computationally and economically efficient, 
and outperforming existing algorithms. 
Index Terms—Active distribution networks, online distributed opti-
mization, photovoltaic, inverter air conditionings. 

I. INTRODUCTION 
CTIVE distribution networks (ADNs) integrated with high 
penetrations of distributed energy resources (DERs) provide 

increasing flexibility for power systems and accommodate ad-
vanced ancillary services such as automatic generation control, fast 
ramping, and power reserves [1], [2]. However, coordinating nu-
merous DERs to achieve some objectives while considering their 
distinct dynamics and constraints in a time-varying environment is 
extremely challenging. Moreover, since the customer-owned 
DERs are not directly dispatched by the utilities, an incentive-
based scheme instead of the direct control from network operators 
is required. 

There has been extended studies on optimal coordination of 
DERs with the ADN in the literatures. Some works such as [3] 

design a centralized solver for the formulated optimization prob-
lems, which is valid for the small-scale application and utility-
owned assets. Refs. [4]--[6] present distributed optimization 
frameworks, where multiple subproblems need to be solved itera-
tively until the convergence for each time slot. We term such 
scheme as solving the problem in a batch fashion [7]. In this case, 
the system profiles are presumed to be stationary and unchanged 
during the whole iterative procedure. However, if we use a small 
time-slot duration to track the optimal setpoints for DERs in the 
fast variation environment, the batch fashion will be communica-
tionally costly and rarely feasible to yield the convergence before 
the system profiles change [7]. Additionally, if the batch mode is 
applied to design an incentive scheme, various rounds of bargains 
between ADN operators and customers are required before reveal-
ing the optimal price [6], which may be user-unfriendly. 

Alternatively, the online convex optimization (OCO) has 
emerged as a promising paradigm. Unlike conventional batch 
fashion, a limited number of iterations are performed at each time 
slot in OCO. The generated coordination signals or setpoints are 
applied directly without waiting for convergency. Based on this 
computationally affordable online method, DERs can continu-
ously pursue the trajectory of the time-varying optimizers using a 
fine-grained sampling time in the fast variable environment. For 
instance, Enyioha et al. [8] propose an online decentralized algo-
rithm for the transmission-level economic dispatch. However, it 
only considers the active power balancing of large generation units 
while DERs are not involved. Refs. [9] and [10] coordinate the 
networked microgrids and DERs to minimize the system cost and 
loss, respectively. A unified online feedback-based controller for 
DERs is presented in [7] to pursue a given objective. To provide 
ancillary services, a primal-dual-based algorithm is proposed in 
[11] to realize a virtual power plant. Zhou et al. [12] present an 
incentive-enabled online optimization framework.  

For online ADN optimization, the aforementioned algorithms 
cannot well integrate the energy storage devices with time-cou-
pling dynamics. For instance, the inverter air conditioning (IAC) 
is thermal storage devices whose power setpoints can be adjusted 
continuously to provide control flexibility to the ADN [13]. The 
main barrier for integrating IACs is that they feature constraints of 
the states of temperatures, coupling their power setpoints within 
the entire operating period. OCO Refs. [11] and [12] neglect DERs 
with the time-coupling constraints to advocate a fast online con-
troller. Li et al. [14] propose an online algorithm for the optimiza-
tion problems considering switching costs but only focuses on the 
temporal coupling between two successive time slots without con-
sidering the whole time span. Look-ahead and model predictive 
control (MPC) schemes are leveraged to tackle the time-coupling 
issues in some recent works [15], [16]. The predictive-based ap-
proach is also tailored in an OCO framework in [17]. However, 
MPC-based framework can only employ a limited number of time 
windows ahead to avoid prohibitively high computational 
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complexity with larger predictive window sizes. Some researchers 
leverage stochastic gradient-based methods to transfer these time-
coupling constraints [3], [18]. However, [3] is designed in a cen-
tralized manner while [18] only considers coordinating batteries at 
the transmission level. Furthermore, they are not formulated in an 
OCO framework based on incentives. 

This paper investigates a Lyapunov optimization-based online 
distributed (LOOD) algorithmic scheme to achieve an incentive-
based DER coordination. In the proposed algorithm, the net-
worked customer-owned DERs are coordinated to provide the ac-
tive power tracking service at the substation, while simultaneously 
minimizing the utility loss and maintain node voltages within an 
acceptable range. Compared with most existing ADN online opti-
mization works, the main innovations of our developed method are 
summarized as follows: 

1) The proposed method can integrate numerous DERs with 
time-coupling constraints and tailor their distinct attributes to the 
OCO framework. Unlike most of the existing techniques for tack-
ling the temporal correlations such as the greedy decoupling 
method and MPC-based controller, the developed LOOD algo-
rithm can decouple the time-coupling constraints from a long-term 
horizon to each time slot. This makes the proposed method provide 
the most cost-efficient result, while also advocating for the real-
time deployment due to the presence of the closed-form solution.   

2) In the proposed method, DERs can individually make deci-
sions in response to the incentive signals that are generated by the 
system-wide information, which well protects customers’ priva-
cies compared with the direct control schemes. Also, a first-order 
filter is applied in the incentive generator to alleviate potential fluc-
tuations of the incentive signals and corresponding responses to 
smoothen the control and convergence process.  

3) A rigorous mathematical analysis is conducted to demon-
strate the impact on the optimality and convergence of our algo-
rithm caused by the step size, weight coefficients, and initialization 
of virtual queues. In particular, the relaxation of the time-coupling 
constraints is proved to cause no violation in our setting.  

4) We conduct large-scale numerical tests to compare the pro-
posed algorithm against the state-of-the-art online algorithms and 
show that the proposed LOOD algorithm outperforms most of 
them, while reducing significant computational complexity and 
avoiding the need for prediction of future information that is es-
sential for controllers like MPC. 

The remainder of this paper is organized as follows. Section II 
formulates a mathematical model to coordinate networked DERs. 
In Section III, LOOD is proposed. The performance analysis is an-
alytically characterized in Section IV. Case studies and bench-
marks are described in Section V. Concluding remarks are sum-
marized in Section VI. 
Notations and Definitions. 

TABLE I 
NOTATIONS 

‖⋅‖ ℓ2-norm of a vector 
𝒫Ξ(⋅) Projection operator onto set Ξ 

N Set of nodes excluding 0 
T /t Set of time slots indexed by t 

K / A Set of nodes connected with PV inverters / IACs 
Z𝑖

PV,𝑡/Z𝑖
AC,𝑡 Feasible set of PV inverters / IACs 

𝑝𝑖
PV,𝑡/𝑞𝑖

PV,𝑡 Active/reactive power output of PV at node 𝑖 at time 𝑡 

𝑠𝑖,𝑎
𝑡 /𝑇𝑖,𝑎

𝑡  Power /indoor temperature of IAC 𝑎 at node 𝑖 at time 𝑡 
𝑝𝑖

𝑡/𝑞𝑖
𝑡 Aggregated power consumption at node 𝑖 at time 𝑡 

Z𝑖
𝑡 Feasible set at node 𝑖 

�̂�𝑖
𝑡 Utility loss function at node 𝑖 at time 𝑡 

𝑈𝑖
𝑡 Utility loss with addition term at node 𝑖 at time 𝑡 

𝛼𝑡/𝛽𝑡 Incentive signals at time 𝑡 
P1, Φ∗̅̅̅ ̅̅ ̅̅ Optimization problem 1 and the optimizer  
P2

𝑡 , Φ𝑙
∗̅̅̅ ̅̅ ̅̅ Optimization problem 2 and time-average optimizer   

PL,𝑖
𝑡  Local problem for each node 

We also have some definitions below:  
1) We define the time-average value 𝑥̅ of a variable 𝑥𝑡  as its 

mean over the whole time span, such that 𝑥̅ = lim
𝑇 →∞

1
𝑇 ∑ 𝑥𝑡𝑇

𝑡=1 . 
2) A function 𝑓(⋅): ℝ𝑛 → ℝ𝑚 is l-Lipschitz continuous on R𝑛 

if there is a constant 0 < 𝑙 < +∞ such that 

‖𝑓(𝑥1) − 𝑓(𝑥2)‖ ≤ 𝑙‖𝑥1 − 𝑥2‖, ∀𝑥1, ∀𝑥2 ∈ ℝ𝑛. (1) 

3) A function 𝑓(⋅): ℝ𝑛 → ℝ𝑚 is 𝜎-strongly convex if for any 
𝑥1  and 𝑥2  in the feasible set, there exists some constant 𝜎 > 0 
such that 

[∇𝑓(𝑥1) − ∇𝑓(𝑥2)]T(𝑥1 − 𝑥2) ≥ 𝜎‖𝑥1 − 𝑥2‖2. (2) 

4) A function 𝑓(⋅) is strongly concave if −𝑓(⋅) is strongly con-
vex.  

II. SYSTEM MODELS 
Consider a distribution network with high penetration of DERs. 

All the control actions are performed in a discrete-time manner 
with a time interval ∆𝑡. The time slots are indexed by t in T ≔
{1,2, ⋯ , 𝑇}. Let N ≔ {1,2, ⋯ , 𝑁} collect all the nodes in the 
network excluding the substation which is denoted by node 0. The 
sets of nodes connected with PV inverters and IACs are denoted 
by K ⊆ N and A ⊆ N, respectively.  

The goals of the ADN operator include assuring voltage security 
at each node, minimizing the social utility loss, and tracking the 
reference power setpoints at the substation specified by the trans-
mission-level operator when the ancillary service is requested [19]. 
The schematic overview of the proposed method is outlined in Fig. 
1. To coordinate DERs, the ADN operator calculates incentive sig-
nals for the next time slot 𝑡 + 1 based on the current information, 
i.e., the received measurements and the reference power setpoint 
at time slot 𝑡. In this paper, each node 𝑖 ∈ N is regarded as a cus-
tomer, who is presumed to make optimal decisions rationally in 
response to incentive signals. In addition, DERs are endowed with 
a home energy management system (HEMS) [20] to assist custom-
ers with rational decisions making. After receiving the incentive 
signals, each HEMS will update the setpoints of governed DERs 
locally and individually by some simple algebraic calculation.   

 
Fig. 1.  Schematic overview of the proposed LOOD algorithm. 
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A. Node Models 
We consider two categories of devices that can represent most 

of the controllable DERs: devices without time-coupling con-
straints, e.g., PV inverters, small-scale diesel generators, etc., and 
devices with time-coupling constraints, e.g., IACs, battery storage 
systems, water heaters, etc. In this paper, we particularly focus on 
PV inverters and IACs as examples of the two categories, respec-
tively, because as we will see next, the modeling of the two devices 
are complicated enough to be easily extended to the others of their 
corresponding categories.  

1) PV Inverter Model 
PV is connected to the network through an inverter. Let 𝑃𝑖

av,𝑡 
be the maximal available active power output of PV 𝑖 at time slot 
𝑡 and 𝑆𝑖

PV be the rated apparent capacity of inverter 𝑖. The active 
power output 𝑝𝑖

PV,𝑡  and reactive power output 𝑞𝑖
PV,𝑡  belong to a 

feasible set Z𝑖
PV,𝑡 given by: 

Z𝑖
PV,𝑡 = {(𝑝𝑖

PV,𝑡, 𝑞𝑖
PV,𝑡)|0 ≤ 𝑝𝑖

PV,𝑡 ≤ 𝑃𝑖
av,𝑡, 

(𝑝𝑖
PV,𝑡)2 + (𝑞𝑖

PV,𝑡)2 ≤ (𝑆𝑖
PV)2}, ∀𝑖, ∀𝑡. (3) 

If ∀𝑖 ∉ K, we have 𝑃𝑖
av,𝑡 = 0 and 𝑆𝑖

PV = 0 for all 𝑡.  
A quadratic function with coefficient 𝑐𝑖

p is designed to penalize 
the active power curtailment of PV. As injecting reactive power is 
not economic for customers, we also penalize the reactive power 
generation/absorbing as a quadratic function with a coefficient 𝑐𝑖

q 
as follows: 

   𝑈𝑖
PV,𝑡(𝑝𝑖

PV,𝑡, 𝑞𝑖
PV,𝑡) ≔  

𝑐𝑖
p(𝑝𝑖

PV,𝑡 − 𝑃𝑖
av,𝑡)2 + 𝑐𝑖

q(𝑞𝑖
PV,𝑡)2, ∀𝑖, ∀𝑡. (4) 

Devices like small-scale diesel generators, fuel cells, and other 
controllable devices without time-coupling constraints can be 
modeled based on their physical limits and mathematically han-
dled similarly as Eq. (3) and Eq. (4); see, e.g., [11]. For simplicity, 
we do not involve their specific models in this paper.  

2) IAC Model 
We consider various IACs may connect to one node, and each 

IAC is installed in an independent room. So, we index the IACs 
connected to node 𝑖 ∈ A as 𝑎 ∈ A𝑖 = {1,2, ⋯ , 𝐴𝑖}, where the 
cardinality 𝐴𝑖 represents the number of connected IACs at i. As 
the operating power is a linear function of its frequency [13], the 
operating power 𝑠𝑖,𝑎

𝑡  of IAC 𝑎 ∈ A𝑖 at time slot 𝑡 is regarded as 
the optimization decision variable. The operating power 𝑠𝑖,𝑎

𝑡  is 
confined in a box set 𝑠𝑖,𝑎

min ≤ 𝑠𝑖,𝑎
𝑡 ≤ 𝑠𝑖,𝑎

max. We further define 𝐬𝑖
𝑡 =

[𝑠𝑖,1
𝑡 , 𝑠𝑖,2

𝑡 , ⋯ , 𝑠𝑖,𝐴𝑖
𝑡 ]T. The reactive power consumed by the IAC 

can be specified by the active power according to its power factor, 
denoted by cos𝜃𝑖,𝑎 . Many recent works such as [21] regard the 
power factor as a given time-invariant constant for each IAC since 
the operating condition is relatively stable. Therefore, we denote a 
coefficient 𝜌𝑖,𝑎 = tan𝜃𝑖,𝑎  and the reactive power of IAC 𝑎  at 
node 𝑖 and time slot 𝑡 equals 𝜌𝑖,𝑎𝑠𝑖,𝑎

𝑡 . Then, based on the lower 
and upper bound vectors 𝐬𝑖

min and 𝐬𝑖
max, the feasible set for IACs 

is formulated as the following compact form: 

Z𝑖
AC,𝑡 = {𝐬𝑖

𝑡|𝐬𝑖
min ≤ 𝐬𝑖

𝑡 ≤ 𝐬𝑖
min}, ∀𝑖, ∀𝑡. (5) 

Note that the reactive power is not treated as a decision variable 
since it directly depends on the active power through the constant 
𝜌𝑖,𝑎 . The IAC features the indoor temperature 𝑇𝑖,𝑎

𝑡  following a 

given dynamic, which can be depicted by the simplified equivalent 
thermal parameters (ETP) model [13]. Let 𝐶𝑖,𝑎 denote the equiv-
alent thermal capacity (J/℃), 𝑊𝑖,𝑎 be the equivalent thermal re-
sistance (℃/W), and  𝑄𝑖,𝑎

𝑡  be the cooling rate (W) of the IAC. 
We consider IAC working in the cool mode. Heat mode can be 
modeled similarly and is omitted here. Assume that only one IAC 
is installed in an independent room, the indoor temperature evolves 
as follows: 

    𝑇𝑖,𝑎
𝑡+1 = 𝑇amb

𝑡 − 𝜂𝑖,𝑎(𝑇amb
𝑡 − 𝑇𝑖,𝑎

𝑡 )  
−𝑄𝑖,𝑎

𝑡 𝑊𝑖,𝑎(1 − 𝜂𝑖,𝑎), ∀𝑎, ∀𝑖, ∀𝑡. (6) 

where 𝜂𝑖,𝑎 = 𝑒−∆𝑡/(𝑊𝑖,𝑎𝐶𝑖,𝑎),  and 𝑇amb
𝑡  is the ambient tempera-

ture at time slot 𝑡.  
Remark 1: Many recent works such as [13] and [22] see the ther-
mal parameters 𝐶𝑖,𝑎 and 𝑊𝑖,𝑎 as time-invariant constants, which 
can be obtained beforehand by the curve fitting. In practice, sto-
chastic fluctuations of the thermal parameters will impact the ac-
curacy of the model. To cope with the bias of ETP model with 
fixed thermal parameters, real-time measurements of indoor tem-
perature will be leveraged as feedbacks to compute the next round 
setpoints of operating power, which will be shown in Section III-
C. Numerical test in Section V will verify the performance of the 
proposed algorithm considering the unpredicted stochastic fluctu-
ations of thermal parameters. 

Then, the cooling rate 𝑄𝑖,𝑎
𝑡  can be modeled as the following lin-

ear function of the operating power 𝑠𝑖,𝑎
𝑡  [13]: 

𝑄𝑖,𝑎
𝑡 = 𝑘𝑖,𝑎𝑠𝑖,𝑎

𝑡 + 𝑓𝑖,𝑎, ∀𝑎, ∀𝑖, ∀𝑡, (7) 

where 𝑘𝑖,𝑎 and 𝑓𝑖,𝑎 are constant coefficients for a given IAC a.  
For further discussion, the ETP model can be equivalently for-

mulated as: 
𝑇𝑖,𝑎

𝑡+1 = 𝑇𝑖,𝑎
𝑡 + 𝜉𝑖,𝑎

+,𝑡 − 𝜉𝑖,𝑎
−,𝑡(𝑠𝑖,𝑎

𝑡 ),      ∀𝑎, ∀𝑖, ∀𝑡,            

{
𝜉𝑖,𝑎

+,𝑡 = (1 − 𝜂𝑖,𝑎)(𝑇amb
𝑡 − 𝑇𝑖,𝑎

𝑡 ),                             

𝜉𝑖,𝑎
−,𝑡(𝑠𝑖,𝑎

𝑡 ) = 𝑘𝑖,𝑎𝑊𝑖,𝑎(1 − 𝜂𝑖,𝑎)𝑠𝑖,𝑎
𝑡 + 𝑓𝑖,𝑎𝑊𝑖,𝑎(1 − 𝜂𝑖,𝑎),

(8) 

where 𝜉𝑖,𝑎
+,𝑡 and 𝜉𝑖,𝑎

−,𝑡 denote the temperature increase part and de-
crease part from time slot t to t+1, respectively. The increase part 
is caused by the ambient heat radiation. The decrease part is a func-
tion of the operating power 𝑠𝑖,𝑎

𝑡  to be optimized. 
To satisfy the temperature requirements, 𝑇𝑖,𝑎

𝑡  is restricted by: 

𝑇𝑖,𝑎
L ≤ 𝑇𝑖,𝑎

𝑡 ≤ 𝑇𝑖,𝑎
H , ∀𝑎, ∀𝑖, ∀𝑡, (9) 

where 𝑇𝑖,𝑎
L  and 𝑇𝑖,𝑎

H  are the lower and upper temperature limits. 
Note that constraints (9) are temporarily coupled. Therefore, mak-
ing decisions at time slot t will impact the future temperatures and 
decisions. To cope with the time-coupling constraints, we will tai-
lor the Lyapunov optimization approach to an online adaptation in 
Section III. 

To better control temperature, we define a utility loss function 
of all IAC of node i at time t as a quadratic function penalizing the 
deviation of the actual temperature from the setpoint: 

𝑈𝑖
AC,𝑡(𝐬𝑖

𝑡) ≔ ∑ 𝑐𝑖,𝑎
AC(𝑇𝑖,𝑎

𝑡 − 𝑇𝑖,𝑎
set)2𝐴𝑖

𝑎=1 , ∀𝑖, ∀𝑡, (10)  

where 𝑐𝑖,𝑎
AC  is a positive cost coefficient and 𝑇𝑖,𝑎

set is the temperature 
setpoint defined as the median value of 𝑇𝑖,𝑎

L  and 𝑇𝑖,𝑎
H .   

Remark 2: We have so far presented a complicated and practical 
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IAC model. Other DERs with time-coupling constraints can be 
modeled in a similar or simpler way. For example, see battery stor-
age model in [17], [18] and water heater model in [23]. Moreover, 
plug-and-play devices like electric vehicle charging and mobile 
storage systems can also be modeled by slightly adapting the pro-
posed model as follows: when some mobile storage system 𝑖 is 
plugged in at time 𝑡, its feasible set Z𝑖

𝑡 can be modeled similarly 
as a regular battery system; when it is plugged out at time 𝑡, its 
feasible set can then be modeled as a singleton Z𝑖

𝑡 = {𝑝𝑖 = 𝑞𝑖 =
0} until it is back to action. Such adaptations all fall within our 
general assumptions for analytical and numerical characterization 
and thus do not affect our main results. Therefore, without losing 
generality, we focus on IACs only in this paper for presentational 
simplicity. 

3) Aggregate Model for Nodes 
Let 𝐳𝑖

𝑡 ≔ [𝑝𝑖
PV,𝑡, 𝑞𝑖

PV,𝑡, (𝐬𝑖
𝑡)T]T collect all the decision variables 

at node 𝑖. We can present the feasible set of 𝐳𝑖
𝑡 as: 

Z𝑖
𝑡 = {𝐳𝑖

𝑡|(𝑝𝑖
PV,𝑡, 𝑞𝑖

PV,𝑡) ∈ Z𝑖
PV,𝑡, 𝐬𝑖

𝑡 ∈ Z𝑖
AC,𝑡}, ∀𝑖, ∀𝑡. (11) 

Note that Z𝑖
𝑡 only comprises some simple constraints excluding 

the time-coupling temperature constraints. 
Then, we define the total utility loss of the customer i as the ac-

cumulation of that of each DER: 

�̂�𝑖
𝑡(𝐳𝑖

𝑡) ≔ 𝑈𝑖
PV,𝑡(𝑝𝑖

PV,𝑡, 𝑞𝑖
PV,𝑡) + 𝑈𝑖

AC,𝑡(𝐬𝑖
𝑡), ∀𝑖, ∀𝑡. (12) 

B. Network Model 
For each node in the ADN, the aggregate active power con-

sumption 𝑝𝑖
𝑡 and reactive power injection 𝑞𝑖

𝑡 can be calculated by: 

𝑝𝑖
𝑡 = 𝑝𝑖

In,𝑡 − 𝑝𝑖
PV,𝑡 + ∑ 𝑠𝑖,𝑎

𝑡𝐴𝑖
𝑎=1 , ∀𝑖, ∀𝑡, (13a)  

𝑞𝑖
𝑡 = 𝑞𝑖

In,𝑡 − 𝑞𝑖
PV,𝑡 + ∑ (𝜌𝑖,𝑎𝑠𝑖,𝑎

𝑡 )𝐴𝑖
𝑎=1 , ∀𝑖, ∀𝑡, (13b)  

with 𝑝𝑖
In,𝑡and 𝑞𝑖

In,𝑡 being the active and reactive power consump-
tion of the inelastic loads of node i, respectively. For notational 
simplicity, we collect all the node active and reactive power by 
vector 𝐩𝑡 and 𝐪𝑡, respectively. Let 𝑣𝑖

𝑡 denote the voltage magni-
tude of node i at time t, and collect the voltage magnitudes of all 
nodes at time t by a vector 𝐯𝑡 = [𝑣1

𝑡 , 𝑣2
𝑡 , ⋯ , 𝑣𝑁

𝑡 ]T . The active 
power at the substation at time slot t is denoted by 𝑝0

𝑡 .  
To develop a computationally affordable controller to advocate 

the online implementation, power flow linearization is leveraged 
to model the AC power flow equations, given by: 

𝐯𝑡 ≈ 𝐑𝐩𝑡 + 𝐗𝐪𝑡 + 𝐕, (14a) 

𝑝0
𝑡 ≈ 𝐌𝐩𝑡 + 𝐍𝐪𝑡 + 𝑜, (14b) 

where 𝐑 ∈ ℝ𝑁×𝑁  , 𝐗 ∈ ℝ𝑁×𝑁 , V ∈ ℝ𝑁×1 , 𝐌 ∈ ℝ1×𝑁 , 𝐍 ∈
ℝ1×𝑁 , and 𝑜 ∈ ℝ1  can be obtained by numerous linearization 
methods with high accuracy, such as approaches in [9] -- [11]. To 
further reduce the linearization inaccuracy, real-time measure-
ments of the voltage magnitudes and active power at the substation, 
denoted by 𝐯m,𝑡  and 𝑝0

m,𝑡 , respectively, are leveraged as feed-
backs to the proposed LOOD algorithm.  

C. Problem Formulation  
The optimization problem can be formulated as a time-average 

utility loss minimizing problem P1 as follows: 

Φ∗̅̅̅ ̅̅ ̅̅ ≔ max
{{𝐳𝑖

𝑡}𝑖=1
𝑁 }𝑡=1

𝑇
  lim

𝑇 →∞
1
𝑇 ∑ Φ𝑡𝑇

𝑡=1 (15a)  

𝐯L ≤ 𝐯𝑡 ≤ 𝐯H, ∀𝑡, (15b) 

𝐸𝑡∣𝑝0
𝑡 − 𝑝0,set

𝑡 ∣ ≤ 𝜀∣𝑝0,set
𝑡 ∣, ∀𝑡, (15c) 

𝐳𝑖
𝑡 ∈ Z𝑖

 𝑡, ∀𝑡, ∀𝑖, (15d) 

𝑇𝑖,𝑎
L ≤ 𝑇𝑖,𝑎

𝑡 ≤ 𝑇𝑖,𝑎
H , ∀𝑎, ∀𝑖, ∀𝑡, (15e) 

(8), (13a), (13b), (14a), (14b), (15f) 

where the objective function is the time-average value of Φ𝑡 with 
Φ𝑡 = E(∑ �̂�𝑖

𝑡𝑁
𝑖=1 ) being the expectation of the summarized util-

ity losses of all customers at time slot t. We define a set Θ𝑡 =
{{𝑃𝑖

av,𝑡, 𝑝𝑖
In,𝑡, 𝑞𝑖

In,𝑡}𝑖=1
𝑁 , 𝑝0,set

𝑡 , 𝑇amb
𝑡 } collecting all random var-

iables in (15). In practice, even though Θ𝑡 may be estimated or ob-
tained in real time, its realization is unknown in the P1 since P1 is 
formulated and solved from a long-term view. Thus, the expecta-
tion E is taken over the vector Θ𝑡, ∀𝑡. Constraint (15b) confines 
the voltage to an acceptable range. Constraint (15c)  tracks the 
power setpoint reference at the substation 𝑝0,set

𝑡  given by the trans-
mission-level operator in real time with a permitted tracking er-
ror 𝜀. 𝐸𝑡 ∈ {0,1} is a binary indicator to switch on the tracking 
service when it is required. The ETP model and power flow equa-
tions are also involved in P1, i.e., constraint (15f). However, due 
to the stochastic fluctuations of thermal parameters and inaccuracy 
of linearized power flow equations, the solutions to P1 may cause 
violations of constraints in practice. In the following, real-time 
measurements feedback at each time slot will be leveraged in the 
online solver to reduce the modeling discrepancy and ensure con-
straints are strictly satisfied. 

III. LOOD ALGORITHM 
A. Virtual Queue-Based Reformulation 

The online implementation requires solving P1  at each time 
slot. To decouple the time-coupling constraints from a long-term 
time horizon, the technique of virtual queues (see e.g., [3], [24]) is 
leveraged to reformulate P1. 

1) Virtual Queue Definition 
By summarizing (8) over time from 1 to T and taking the ex-

pectation of each term, we get: 

E(𝑇𝑖,𝑎
𝑡+1) =                                    
E(𝑇𝑖,𝑎

𝑡=1) + ∑ E[𝜉𝑖,𝑎
+,𝑡 − 𝜉𝑖,𝑎

−,𝑡(𝑠𝑖,𝑎
𝑡 )],    ∀𝑎, ∀𝑖.𝑇

𝑡=1 (16) 

Divide both sides of (16) by T and take 𝑇 → ∞ to get:  

  lim
𝑇 →∞

1
𝑇 ∑ E[𝜉𝑖,𝑎

+,𝑡 − 𝜉𝑖,𝑎
−,𝑡(𝑠𝑖,𝑎

𝑡 )]𝑇
𝑡=1 = 0, ∀𝑎, ∀𝑖, (17)  

as 𝑇𝑖,𝑎
𝑡=1and 𝑇𝑖,𝑎

𝑡=𝑇+1 are both bounded by [𝑇𝑖,𝑎
L , 𝑇𝑖,𝑎

H ].  
Remark 3: Constraint Eq. (17) is a relaxed version of (15e). If 
we replace Eq. (15e) in P1 by  (17) and denote the pertinent op-
timizer as Φ𝑟

∗̅̅̅̅ ̅̅ ̅, we must have Φ𝑟
∗̅̅̅̅ ̅̅ ̅ ≤ Φ∗̅̅̅ ̅̅ ̅̅.  

To address the relaxed temperature constraints in (17), we can 
define a virtual queue 𝐻𝑖,𝑎

𝑡  for all 𝑎 ∈ A𝑖 and 𝑖 ∈ N  as: 

𝐻𝑖,𝑎
𝑡+1 = 𝐻𝑖,𝑎

𝑡 + [𝜉𝑖,𝑎
+,𝑡 − 𝜉𝑖,𝑎

−,𝑡(𝑠𝑖,𝑎
𝑡 )], ∀𝑎, ∀𝑖, ∀𝑡. (18) 

The arrival rate of the queue is the injected temperature while 
the departure rate is the cooling temperature at time slot t.  
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Following the rate stability theorem [24], we place (17) with: 

lim
𝑡→∞

[
E(∣𝐻𝑖,𝑎

𝑡 ∣)
𝑡 ] = 0, ∀𝑎, ∀𝑖. (19)

In most existing researches such as [3], the initial value of the vir-
tual queue  𝐻𝑖,𝑎

𝑡  is set to zero because it handles the time-average 
constraints without any relaxation. Differently, the original con-
straints must be satisfied at each time slot in P1. To avoid the vio-
lations of constraints due to the relaxation, a hot start approach of 
the virtual queues will be illustrated in the Section III-C. 

2) Lyapunov Optimization 
The constraint (19) still hinders the online deployment as it is 

coupled over a long-term horizon. Consequently, the Lyapunov 
optimization presented in [24] is leveraged to transfer them to a 
penalty term attached to the objective function at each time slot 
based on the observation of the current states. 

Let 𝐇𝑖
𝑡 ∈ ℝ𝐴𝑖×1 collect all the virtual queues defined for 𝑎 ∈

A𝑖 of node 𝑖. Then, we define a Lyapunov function 12 ||𝐇𝑖
𝑡||2 to 

measure the size of the queues. Then, the conditional one-slot Lya-
punov drift can be defined as follows to measure the expected 
queue size growth under observation of current state 𝐇𝑖

𝑡: 

∆(𝐇𝑖
𝑡) ≔ E[ 1

2 ||𝐇𝑖
𝑡+1||2 − 1

2 ||𝐇𝑖
𝑡||2|𝐇𝑖

𝑡]. (20)  

To satisfy constraints (19), we minimize the Lyapunov drift to 
push the queues toward a less congested sate. Following the mini-
mizing drift-plus-penalty method in [24], we minimize the 
weighted sum of the drift and cost at each time slot to obtain Φ𝑟

∗̅̅̅̅ ̅̅ ̅ as 
follows: 

Φ𝑟
𝑡 ≔ 1

𝑉 ∑ ∆(𝐇𝑖
𝑡)𝑁

𝑖=1 + E(∑ 𝑈�̂�
𝑡𝑁

𝑖=1 ∣𝐇𝑖
𝑡), (21) 

where Φ𝑟
∗̅̅̅̅ ̅̅ ̅ denotes time-average value of optimized Φ𝑟

𝑡  and 𝑉  is a 
positive coefficient to achieve a tradeoff between the stability of 
queues and utility loss.  
Lemma 1: The drift-plus-penalty function is upper bounded at 
each time slot t by: 

Φ𝑟
𝑡 ≤ 𝐵

𝑉 +
(∑ 𝑈𝑖

AC′,𝑡(𝐬𝑖
𝑡)𝑁

𝑖=1 ∣𝐇𝑖
𝑡)

𝑉 + E(∑ 𝑈�̂�
𝑡𝑁

𝑖=1 |𝐇𝑖
𝑡), (22)  

where 

𝐵 = 1
2 ∑ ∑ (𝜉𝑖,𝑎

−,max − 𝜉𝑖,𝑎
+,min)

2𝐴𝑖
𝑎=1

𝑁
𝑖=1 , (23a)  

𝑈𝑖
AC′,𝑡(𝐬𝑖

𝑡) = 1
𝑉 ∑ 𝐻𝑖,𝑎

𝑡 (𝜉𝑖,𝑎
+,𝑡 − 𝜉𝑖,𝑎

−,𝑡)𝐴𝑖
𝑎=1 , (23b)  

with 𝜉𝑖,𝑎
+,min = min(𝜉𝑖,𝑎

+,𝑡)
𝑡∈T

 and 𝜉𝑖,𝑎
−,max = max(𝜉𝑖,𝑎

−,t)
𝑡∈T

. 

Proof: See Appendix A. 
Based on Lemma 1, instead of optimizing the drift-plus-penalty 

function, we will minimize its upper bound alternatively. Follow-
ing the theorem on opportunistically minimizing an expectation in 
[24] (c.f. 1.8 in [24]), the policy for the optimization is to observe 
the current state 𝐇𝑖

𝑡  and then select the minimizer of 
∑ [1

𝑉 𝑈𝑖
AC',𝑡(𝐬𝑖

𝑡)𝑁
𝑖=1 + �̂�𝑖

𝑡].  
In practice, 𝑈𝑖

AC′,𝑡(𝐬𝑖
𝑡): ℝ𝐴𝑖×1 → ℝ1 can be interpreted as an 

additional utility loss function of the aggregated IACs that carries 
more temporal knowledge than (10). Hence, we reformulate the 
utility loss function of each node as: 

𝑈𝑖
𝑡(𝐳𝑖

𝑡) = �̂�𝑖
𝑡(𝐳𝑖

𝑡) + 𝑈𝑖
AC′,𝑡(𝐬𝑖

𝑡), ∀𝑖, ∀𝑡. (24) 

Assumption 1: The utility loss function 𝑈𝑖
𝑡(𝐳𝑖

𝑡), ∀𝑖, ∀𝑡  is 𝜎 -
strongly convex and 𝐿- Lipschitz continuous. 

Hereafter, the long-term optimization problem P1  comprising 
the time-coupling constraints can be reformulated as a simple real-
time problem to be executed at each time slot without reliance on 
high-complex solvers. The new problem P2

𝑡 , ∀𝑡 is given by: 

Φ𝑙
𝑡,∗ ≔ min

{𝐳𝑖
𝑡}𝑖=1

𝑁
∑ 𝑈𝑖

𝑡(𝐳𝑖
𝑡)𝑁

𝑖=1 , (25a)  

𝐑𝐩𝑡 + 𝐗𝐪𝑡 + 𝐕 − 𝐯H ≤ 𝟎, : 𝐮H,𝑡, (25b) 

𝐯L − 𝐑𝐩𝑡 − 𝐗𝐪𝑡 − 𝐕 ≤ 𝟎, : 𝐮L,𝑡, (25c) 

𝐸𝑡[𝐌𝐩𝑡 + 𝐍𝐪𝑡 + 𝑜 − (𝑝0,set
𝑡 + 𝜀∣𝑝0,set

𝑡 ∣)] ≤ 0, : 𝜆H,𝑡, (25d) 

𝐸𝑡[(𝑝0,set
𝑡 − 𝜀∣𝑝0,set

𝑡 ∣) − 𝐌𝐩𝑡 − 𝐍𝐪𝑡 − 𝑜] ≤ 0, : 𝜆L,𝑡, (25e) 

𝐳𝑖
𝑡 ∈ Z𝑖

 𝑡, ∀𝑖, (25f) 

where the update of virtual queues 𝐻𝑖,𝑎
𝑡  follows Eq.(18). Let 𝐮H,𝑡 

and 𝐮L,𝑡 collect dual variables associated with constraints (25b) 
and (25c), respectively, while 𝜆H,𝑡 and 𝜆L,𝑡 be dual variables for 
constraint (25d) and (25e) , respectively. Note that all the dual 
variables are non-negative.  

For notational simplicity, we denote the objective function of 
P2

𝑡  by 𝑈 𝑡(𝐳𝑡):= ∑ 𝑈𝑖
𝑡(𝐳𝑖

𝑡)𝑁
𝑖=1  and the functional constraints 

(25b) -- (25e) by a compact stacked form 𝑔𝑡(𝐳𝑡) ≤ 0 with 𝐳𝑡: =
{𝐳𝑖

𝑡}𝑖=1
𝑁  being all the decision variables. Due to the strong convex-

ity of 𝑈𝑖
𝑡, the next result follows naturally. 

Lemma 2: The objective function 𝑈 𝑡(𝐳𝑡), ∀𝑡 is 𝜎𝑢-strongly con-
vex.  

Further, because 𝑔𝑡(𝐳𝑡) is a set of linear constraints, the Jaco-
bian of 𝑔𝑡(𝐳𝑡) is bounded by a positive constant 𝜎𝑔 over the feasi-
ble set of 𝐳𝑡, such that ||∇𝑔𝑡(𝐳𝑡)||𝐹 ≤ 𝜎𝑔. Notice that 𝜎𝑔 can be 
characterized according the parameter matrices R, X, M, and N. 
Theorem 1: The difference between time-average value of Φ𝑙

𝑡,∗ 
denoted as Φ𝑙

∗̅̅̅ ̅̅ ̅̅, and the optimizer of P1, i.e., Φ∗̅̅̅ ̅̅ ̅̅ is bounded, such 
that  Φ𝑙

∗̅̅̅ ̅̅ ̅̅ ≤ Φ∗̅̅̅ ̅̅ ̅̅ + 𝐵
𝑉 .  

Proof: See Appendix B. 
Remark 4:	P2

𝑡 	provides a time decouple reformulation within 
𝒪(1

𝑉 ) of the optimal results of original P1  together with 𝒪(𝑉 ) 
tradeoff in the time-coupling constraints. A large V can decrease 
the optimality gap but also bring about constraint’s violation. In 
Section III-C, the upper limit for V that ensures the constraints is 
demonstrated. 

B. Online Distributed Dual Ascent Algorithm 
To design an online distributed solver for P2

𝑡 , we consider its 
regularized Lagrangian function defined as follows: 

L𝑡(𝐳𝑡, 𝐝𝑡) = 𝑈 𝑡(𝐳𝑡) + (𝐝𝑡)T𝑔(𝐳𝑡) − 𝜑
2 ‖𝐝𝑡‖2, (26)  

where 𝐝𝑡 = [(𝐮H,𝑡)T, (𝐮L,𝑡)T, 𝜆H,𝑡, 𝜆L,𝑡]T  collects all the dual 
variables, and 𝜑2 ‖𝐝𝑡‖2 is a regularization term to ensure the strong-
concavity of the dual function with a predefined parameter 𝜑 > 0. 
Such regulation is widely used in OCO, such as [10]--[12]. The 
bounded gap between the saddle point of the regularized Lagran-
gian function and the original one can be found in [25]. 

We next propose a dual ascent algorithm to find the saddle point 
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of (26). To that end, consider the following dual problem: 

max
𝐝𝑡∈ℝ+

2𝑁+2
 𝐷𝑡(𝐝𝑡), (27) 

where 𝐷𝑡(𝐝𝑡) is the dual function calculated from: 

𝐷𝑡(𝐝𝑡) = min
𝐳𝑡∈Z𝑡

𝑈 𝑡(𝐳𝑡) + (𝐝𝑡)T𝑔(𝐳𝑡) − 𝜑
2 ‖𝐝𝑡‖2 . (28) 

Assumption 2: P2
𝑡  is strictly feasible for ∀𝑡, i.e., it satisfies the 

Slater’s condition. 
The strong duality of P2

𝑡  holds based on Assumption 2 [26]. 
Thus, if 𝐝𝑡,∗ is the solver to (27), 𝐳𝑡,∗ = argmin 𝐷𝑡(𝐝𝑡,∗) is the 
optimal solution to P2

𝑡 . 
We continue to investigate how to solve the problem in a dis-

tributed manner based on incentives. Given the optimal dual vari-
ables, the primal problem can be divided and equivalently solved 
through N subproblems. Particularly, each subproblem only re-
quires the local information and a couple of coordination signals 
composed of the dual variables. The local subproblem denoted as 
PL,𝑖

𝑡 , ∀𝑖, ∀𝑡 is given by:  

min
𝐳𝑖

𝑡∈Z𝑖
 𝑡
  𝑈𝑖

𝑡(𝐳𝑖
𝑡) − 𝛼𝑖

𝑡,∗(𝑝𝑖
PV,𝑡 − ∑ 𝑠𝑖,𝑎

𝑡𝐴𝑖
𝑎=1 ) −  

𝛽𝑖
𝑡,∗(𝑞𝑖

PV,𝑡 − ∑ 𝜌𝑖,𝑎
𝑡 𝑠𝑖,𝑎

𝑡𝐴𝑖
𝑎=1 ). (29)  

In PL,𝑖
𝑡 , 𝛼𝑖

𝑡,∗and 𝛽𝑖
𝑡,∗ are the coordination signals with the vec-

tor forms being 𝛼𝑡,∗ and 𝛽𝑡,∗, respectively. By [12], we design the 
signals as follows: 

𝛼𝑡,∗ = 𝐑(𝐮L,𝑡∗ − 𝐮H,𝑡∗)⏟⏟⏟⏟⏟⏟⏟
incentive for voltage regulation

+ [(𝜆H,𝑡∗ − 𝜆L,𝑡∗)𝐌]T
⏟⏟⏟⏟⏟⏟⏟⏟⏟

incentive for power tracking

(30a) 

𝛽𝑡,∗ = 𝐗(𝐮L,𝑡∗ − 𝐮H,𝑡∗)⏟⏟⏟⏟⏟⏟⏟
incentive for voltage regulation

+ [(𝜆H,𝑡∗ − 𝜆L,𝑡∗)𝐍]T⏟⏟⏟⏟⏟⏟⏟⏟⏟
incentive for power tracking

(30b) 

Note that according to Theorem 2 in [12], the design of the co-
ordination signals ensures an exact distributed reformulation, i.e., 
the optimal solutions of N subproblems PL,𝑖

𝑡  coincide with the 
centralized optimization results of P2

𝑡 .  
In practice, the coordination signals 𝛼𝑖

𝑡,∗and 𝛽𝑖
𝑡,∗ work as mon-

etary incentives related to the active and reactive power injections 
for node 𝑖. The incentive signals comprise two components, the 
first being the price for voltage regulation, and the second used to 
induce customers to regulate the DERs for a power tracking ser-
vice. Both two terms are characterized by the structure of distribu-
tion network through matrices R, X, M , and N , together with 
dual variables associated with voltage and power tracking con-
straints. Given Eq. (30), Eq. (29) presents a well-define local wel-
fare maximization problem which minimizes the utility loss while 
concurrently maximizing the rewards. 

We further define the incentive function 𝑐(𝐝𝑡): ℝ+
2𝑁+2 → ℝ2𝑁  

to compactly denote Eq. (30a) and Eq. (30b). From the structure 
of 𝑐(𝐝𝑡), we have the following results. Note that 𝑐(𝐝𝑡) is 𝐿𝑐 - 
Lipschitz continuous with some 0 < 𝐿𝑐 < +∞. 

According to our setting, P2
𝑡  is required to be online imple-

mented. Concurrently, to reduce the fluctuations of incentives, a 
first-order filter is also applied in this algorithm. The update rules 
of dual variables and inventive signals are given by: 

𝐮H,𝑡+1 = 𝒫ℝ+
[(1 − 𝜑)𝐮H,𝑡 + 𝛿(𝐯m,𝑡 − 𝐯H)], (31a) 

𝐮L,𝑡+1 = 𝒫ℝ+
[(1 − 𝜑)𝐮L,𝑡 + 𝛿(𝐯L − 𝐯m,𝑡)], (31b) 

𝜆H,𝑡+1 = 𝒫ℝ+
[(1 − 𝜑)𝜆H,𝑡 + 𝛿(𝑝0

m,𝑡 − 𝑝0,set
𝑡 − 𝜀∣𝑝0,set

𝑡 ∣)], (31c) 

𝜆L,𝑡+1 = 𝒫ℝ+
[(1 − 𝜑)𝜆L,𝑡 + 𝛿(𝑝0,set

𝑡 − 𝜀∣𝑝0,set
𝑡 ∣ − 𝑝0

m,𝑡)], (31d) 

𝛼�̂�+1 = 𝐑(𝐮L,𝑡 − 𝐮H,𝑡) + [(𝜆H,𝑡 − 𝜆L,𝑡)𝐌]T, (31e) 

𝛽�̂�+1 = 𝐗(𝐮L,𝑡 − 𝐮H,𝑡) + [(𝜆H,𝑡 − 𝜆L,𝑡)𝐍]T, (31f) 

𝛼𝑡+1 = (1 − 𝜙)𝛼�̂�+1 + 𝜙𝛼𝑡, (31g) 

𝛽𝑡+1 = (1 − 𝜙)𝛽�̂�+1 + 𝜙𝛽𝑡. (31h) 

To recap, the proposed LOOD algorithm is illustrated as 
LOOD Algorithm 
Initialization:  

Customers choose an initial value for virtual queue 𝐇𝑖
𝑡=0 ac-

cording to the hot start policy range. See (35a) and (35b). 
ADN operator sets initial dual variables d𝑡=0 = 0; sets 𝛿 ∈

(0, 𝛿max] and 𝑉 ∈ (0, 𝑉 max]. (See (35c) and Theorem 2) 
for t = 0, 1, 2, …, T 

[P1] ADN operator sends (𝛼𝑖
𝑡, 𝛽𝑖

𝑡) to each customer. 
[P2] Customer 𝑖 receives (𝛼𝑖

𝑡, 𝛽𝑖
𝑡). 

[P3] Customer 𝑖 measures indoor temperatures and solves 
PL,𝑖

𝑡  locally. 
[P4] ADN operator measures the node voltage and active 

power at the substation, i.e., 𝐯m,𝑡 and 𝑝0
m,𝑡, respectively. 

[P5] ADN operator updates dual variables according to 
(31a)--(31d). 

[P6] ADN operator updates (𝛼𝑖
𝑡+1, 𝛽𝑖

𝑡+1) based on (31e)--
(31h). 
end for 
In our algorithm, [P1] and [P4] to [P6] are processed by the 

ADN operator based on measurements and the received setpoint 
reference from transmission-level operators. [P2] and [P3] are 
solved by customers locally depending on the private information 
and incentive signals. It is hard to get the optimal incentive signals 
in time varying conditions since the optimal dual variables can be 
revealed only after various iterations between the ADN operator 
and customers. However, the environments and customers’ re-
sponses have changed during the multiple rounds’ bargains. Alter-
natively, based on the OCO framework, we update the dual varia-
bles at time slot 𝑡 + 1 relying on the last round dual variables and 
current measurements. Convergence and optimality gaps of this 
online algorithm will be characterized analytically in Section IV. 
Remark 5: In this algorithm, the actual incentive signal is tuned 
by a first-order filter, as shown in (31g) and(31h). The motivation 
of this filter is to smooth the incentive signal. In practice, fast fluc-
tuations of the monetary incentive are not user-friendly. More im-
portantly, the fluctuations of incentive signals will be reflected in 
the node power and voltage finally. As the violations are essential 
to power systems’ stability [27], we smoothen the incentive signals 
to reduce the violation of node power and voltage accordingly. We 
also characterize the discrepancy on the solver of the optimization 
problems after filtering the incentive signals.  

Note that we utilize measurements feedback which follows the 
accurate AC power flow model in the update of dual variables. 
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Thus, we have the following assumption to bound the discrepancy 
between the linearization power flow model and the actual meas-
urements. 
Assumption 3: There exists a positive constant e such that: 

‖𝑔𝑡(𝐳𝑡) − 𝑔m,𝑡(𝐳𝑡)‖ ≤ 𝑒, ∀𝑡. (32) 

where 𝑔m,𝑡(𝐳𝑡) denotes the states of functional constraints calcu-
lated by AC power flow model. As the linearization approximation 
is accurate in normal conditions, the bias characterized by 𝑒 is usu-
ally small. 

C. Solving Local Problems 
In the LOOD algorithm, customers need to solve PL,𝑖

𝑡  locally. 
Although the local problem may aggregate several devices and 
their pertinent variables, they can be decoupled, i.e., PL,𝑖

𝑡  can be 
rewritten as the summation of several subproblems that comprise 
disjoint components of the variable 𝐳𝑡 . Therefore, devices can 
compute their own decisions independent of each other.  

For the PV inverters, the setpoints of active and reactive power 
generation at time slot 𝑡 depend on some predefined parameters, 
received incentives, and the current available power output that 
can be observed. A closed-form solution of PV inverter to PL,𝑖

𝑡  
(see Eq. (29) with Z𝑖

PV,𝑡 defined by Eq. (3)) can be given by: 

(𝑝𝑖
PV,𝑡, 𝑞𝑖

PV,𝑡) = 𝒫Z𝑖
PV,𝑡 (

𝛼𝑖
𝑡 + 2𝑐𝑖

p𝑃𝑖
av,𝑡

2𝑐𝑖
p , 𝛽𝑖

𝑡

2𝑐𝑖
q) , ∀𝑡, ∀𝑖 ∈ K.(33) 

In many recent works, such as [7], [10], [11], and [12], 𝑃𝑖
av,𝑡 is 

revealed at the beginning of time slot 𝑡, and assumed to hold the 
value until 𝑡 + 1 given that ∆𝑡 is short enough. In fact, the esti-
mated 𝑃𝑖

av,𝑡 is generally accurate due to the fine-grained duration 
of control. 

Next, we give a closed-form solution for each IAC to PL,𝑖
𝑡  (see 

Eq. (29) with Z𝑖
AC,𝑡 defined by Eq. (5)) at time slot t as follows: 

    𝑠𝑖,𝑎
𝑡 = 𝒫[0,𝑠𝑖,𝑎

max](
𝑇𝑖,𝑎

m,𝑡−1 − 𝑇𝑖,𝑎
set + 𝜉𝑖,𝑎

+,𝑡

Ω𝑖,𝑎
+

𝐻𝑖,𝑎
𝑡

𝑉𝑐𝑖,𝑎
ACΩ𝑖,𝑎

       

        −
𝛼𝑖

𝑡 + 𝑦𝑖,𝑎
𝑡 𝛽𝑖

𝑡

2𝑐𝑖,𝑎
ACΩ𝑖,𝑎

2 −
𝑓𝑖,𝑎

𝑘𝑖,𝑎
), ∀𝑡, ∀𝑎 ∈ A𝑖, ∀𝑖 ∈ A, (34) 

where Ω𝑖,𝑎 = 𝑘𝑖,𝑎𝑊𝑖,𝑎(1 − 𝜂𝑖,𝑎) . To reduce the discrepancy 
from the stochastic fluctuations of the thermal parameters, the 
measurement of the indoor temperature at the previous round, i.e., 
𝑇𝑖,𝑎

m,𝑡−1 is used to replace the ETP model when we compute the 
current setpoint.   
Remark 6: Neither the incentive signals update (Eq. (31)) or lo-
cal decision-making (Eq. (33) and Eq. (34)) relies on the pre-
dicted information, which makes the proposed method indifferent 
to forecast errors that is essential for most real-time controller like 
MPC, and considerably reduces the computation burden for both 
ADN operator and local HEMS. 
Lemma 3: The relaxation of the original time-coupled constraints 
in (15e) will not bring about violations if the initialization of the 
virtual queue, denoted by ℎ𝑖,𝑎 and weight coefficient V are chosen 
from [ℎ𝑖,𝑎

min, ℎ𝑖,𝑎
max] and  (0, 𝑉 max], respectively.  

The boundaries of ℎ𝑖,𝑎 and V are given by: 

ℎ𝑖,𝑎
min =  

[
(𝛼𝑖
max + 𝜌𝑖,𝑎

𝑡 𝛽𝑖
max)

Ω𝑖,𝑎
+ 𝑐𝑖,𝑎

AC𝑇𝑖,𝑎
set − 𝑇𝑖,𝑎

H ]𝑉 − 𝑇𝑖,𝑎
H + 𝑇𝑖,𝑎

𝑡=0, ∀𝑎, ∀𝑖, (35a) 

ℎ𝑖,𝑎
max =  

[
(𝛼𝑖

min + 𝜌𝑖,𝑎
𝑡 𝛽𝑖

min)
Ω𝑖,𝑎

+ 𝑐𝑖,𝑎
AC𝑇𝑖,𝑎

set − 𝑇𝑖,𝑎
L ]𝑉 − 𝑇𝑖,𝑎

L + 𝑇𝑖,𝑎
𝑡=0, ∀𝑎, ∀𝑖, (35b) 

𝑉 max =  

min
𝑖∈N

[
Ω𝑖,𝑎(𝑇𝑖,𝑎

L − 𝑇𝑖,𝑎
H )

𝑐𝑖,𝑎
ACΩ𝑖,𝑎(𝑇𝑖,𝑎

L − 𝑇𝑖,𝑎
H ) + 𝛼𝑖

max − 𝛼𝑖
min + 𝜌𝑖,𝑎

𝑡 (𝛽𝑖
max − 𝛽𝑖

min)
]. (35c) 

where 𝛼𝑖
max = max(𝛼𝑖

𝑡), 𝛼𝑖
min = min(𝛼𝑖

𝑡), 𝛽𝑖
max = max(𝛽𝑖

𝑡), 
and 𝛽𝑖

min = min(𝛽𝑖
𝑡) for all 𝑡 ∈ T. We assume these boundaries 

of incentives can be estimated based on the history data.   
The proof of Lemma 3 is that if 𝑇𝑖,𝑎

𝑡−1 ≥ 𝑇𝑖,𝑎
H , a solver 𝑠𝑖,𝑎

𝑡  that 
makes sure 𝜉𝑖,𝑎

+,𝑡 − 𝜉𝑖,𝑎
−,𝑡 ≤ 0 will be obtained based on (34). Sim-

ilarly, if 𝑇𝑖,𝑎
𝑡−1 ≤ 𝑇𝑖,𝑎

L , we will have 𝜉𝑖,𝑎
+,𝑡 − 𝜉𝑖,𝑎

−,𝑡 ≥ 0. To recap, 
the generated solver for the IAC will cool the room if the indoor 
temperature is going to exceed the upper limit, while stop cooling 
the room if the indoor temperature outrides the lower limit.  
Remark 7: Based on Lemma 3, we only need to estimate the upper 
and lower limits of incentives. Thus, the accuracy requirements are 
relatively low. In practice, the ADN operator can also confine the 
incentives in a predefined range beforehand like many current de-
mand response programs, which better advocates the estimation.  

D. Summary of LOOD 
To summarize the developed algorithmic framework, a 

flowchart of LOOD is outlined in Fig. 2.  
The dashed box in Fig. 2 represents the process of measurement 

feedback. In practice, once the setpoints of DERs are implemented, 
indoor temperatures, node voltages, and power at the substation 
will change following the dynamics of the underlying physical sys-
tem. Although we use simplified models to formulate the problem, 
the incentive signals and setpoints of devices are updated based on 
the filed measurements, which makes the proposed method robust 
to modeling errors. As illustrated in Fig. 2, we can use the nonlin-
ear AC power flow equations and ETP model with time-varying 
thermal parameters to mimic measurements in the case study of 
Section V. 

 
Fig. 2.  Flowchart of the developed algorithmic framework. 

Remark 8 (Communication Failure): The proposed method is ro-
bust to communication delays or failures to some extends. As dis-
cussed in [7] and [28], if the coordination signals are lost tempo-
rarily, customers can compute the setpoints of DERs based on the 
previous signals. The system can still track the optimizers in the 
long term. However, if the communication system is permanently 
down, the proposed algorithm that relies on central coordination 
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may suffer from sub-optimal solutions. Such topics are beyond the 
scope of the work and our ongoing efforts are developing local 
controllers for better control under such scenarios. 

IV. PERFORMANCE ANALYSIS 
In this section we analytically characterize the performance of 

the LOOD method. We first introduce the following useful lem-
mas. 
Lemma 4: Under Assumption 1, the inverse function of ∇𝑈𝑖

𝑡 de-
noted by (∇𝑈𝑖

𝑡)−1 exists and is 1𝜎 -Lipschitz continuous.  
Proof: See Appendix C. 

Lemma 5: The dual function, i.e.,  𝐷𝑡(⋅), has an 𝐿𝐷-Lipschitz 
continuous gradient, where 𝐿𝐷 = 𝜎𝑔

2 𝜎𝑢⁄ + 𝜑, based on Lemma 
2 and the bounded Jacobian of 𝑔𝑡(𝐳𝑡). Furthermore, 𝐷𝑡(⋅) is 𝜎𝐷-
strongly concave where 𝜎𝐷 ≤ 𝐿𝐷. 

The proof can be found in Lemma 2 of [17]. 
Following Assumption 2, the dual problem is feasible due to the 

strong duality. Therefore, the difference between two consecutive 
dual optimums will always be bounded by a positive constant ∆𝑑, 
such that  ‖𝐝𝑡,∗ − 𝐝𝑡+1,∗‖ ≤ ∆𝑑. Then, we can characterize the 
convergence of the dual variables. 
Theorem 2: (Convergence of dual variables) If the step size in 
LOOD is chosen according to 0 < 𝛿 ≤ 1

𝜎𝐷+𝐿𝐷
, the discrepancy 

between optimal dual variables of P2
𝑡  and the dual variables gen-

erated by LOOD are bounded by: 

lim
𝑡→∞

sup ‖𝐝𝑡+1 − 𝐝𝑡+1,∗‖ ≤ ℓ, (36) 

where ℓ = ∆𝑑+𝛿𝑒
1−𝜅  and 𝜅=√1−2𝛿𝜎𝐷𝐿𝐷

𝜎𝐷+𝐿𝐷
.  

Proof: See Appendix D. 
Theorem 2 characterizes a bounded gap between the optimal 

dual variables of P2
𝑡  and the dual variables solved by LOOD. It 

also indicates ways to reduce the gap ℓ to improve the performance:  
1) The deviation of optimal dual variables between consecutive 
time slots, i.e., ∆𝑑, which captures the underlying dynamics of the 
ADN due to the time-varying system profiles, such as the inflexi-
ble load, reference setpoint at the substation, and variable parame-
ters in utility loss functions. Therefore, choosing small ∆𝑡, i.e., in-
creasing control frequency, improves the performance; 
2) The error 𝑒 caused by power flow linearization motivates us to 
use accurate linearization method, e.g., real-time linearization 
method based on current operational points, i.e., the measurement 
feedback. 

Moreover, when P2
𝑡  degenerates to a time-invariant problem 

such that ∆𝑑= 0 and 𝑒 = 0, the online algorithm can track the op-
timal solutions accurately as ℓ = 0 in this case.  

It is worth noticing that the upper bounds presented in this paper 
represent the worst-case since they are obtained conservatively.  
Corollary 1: (Convergence of the primal variables) The discrep-
ancy between optimal solutions of P2

𝑡  and the solvers generated 
by LOOD are bounded by: 

lim
𝑡→∞

sup ∥𝐳𝑖
𝑡+1 − 𝐳𝑖

𝑡+1,∗∥ ≤ 𝑌𝑖, ∀𝑖. (37) 

where 𝑌𝑖 = 𝐿𝑐(1+𝐴𝑖)
𝜎 (ℓ + 𝜙∆𝑑). 

Proof: See Appendix E. 
Corollary 1 characterizes the convergence of the primal varia-

bles based on Theorem 2. The upper bound 𝑌𝑖  has two compo-
nents: The first term comes from the fixed gap of convergence of 

dual variables, i.e., ℓ. The second term is due to the presence of the 
first-order filter in the incentive function. A large filter coefficient 
𝜙 will flatten the fluctuations of incentive signals but augment the 
fixed gap. These two terms are both characterized by 𝐿𝑐(1+𝐴𝑖)

𝜎  that 
captures the structure of incentive and utility functions. For exam-
ple, when the utility loss functions of customers are more convex, 
i.e., the 𝜎 is larger, the upper bound 𝑌𝑖 will be tighter. 
Theorem 3: (Main results) If LOOD is used to solve the original 
problem P1, the difference between the LOOD-based time-aver-
age optimizer, denoted as ΦLOOD̅̅̅̅̅̅̅̅̅̅̅̅̅̅, and the original optimum Φ∗̅̅̅ ̅̅ ̅̅ is 
upper bounded as : 

ΦLOOD̅̅̅̅̅̅̅̅̅̅̅̅̅̅ ≤ Φ∗̅̅̅ ̅̅ ̅̅ + 𝐵
𝑉 + 𝑁𝐿𝑌 , (38) 

where  𝑌 = max(𝑌𝑖)𝑖∈N. 
Proof: See Appendix F. 
The upper bound in Theorem 3 comprises two terms. The first 

one is caused by the time-coupling relaxation, i.e., the reformula-
tion from P1 to P2

𝑡 . As characterized in Lemma 1, 𝐵 depends on 
the temperature dynamics of IACs. Even though this gap is una-
voidable, we can choose a proper coefficient 𝑉  to reduce the devi-
ation. The second term comes from using the distributed online 
dual ascent algorithm when we solve the time-varying P2

𝑡 . As dis-
cussed in the convergence of dual variables and primal variables, 
i.e., Theorem 2 and Corollary 1, the magnitude of 𝑁𝐿𝑌  relies on 
the underlying dynamics of the ADN, settings of utility loss func-
tions, and the number of nodes. Since the second term is linear on 
𝑁 , the gap on average of numbers of nodes will not increase with 
the augments of nodes. We reiterate that the optimality gap 𝐵𝑉 +
𝑁𝐿𝑌  represents a worst-case, while the magnitude of the optimal-
ity gap in real-world must be smaller. Section V will corroborate 
the upper bound numerically to verify the guarantees of practical 
performance. 

V.  CASE STUDY 

A. Simulation Setup 
We run our method from 8:00 to 19:00, while it is divided into 

660 time slots, i.e., ∆𝑡 = 1min. The IEEE 33-node test feeder [29] 
is unchanged topologically but modified through adding PV in-
verters and IACs. It is assumed that PV systems with a 500kVA 
rating inverter are located at node 2, 3, 10, 12, 16, and 18. The PV 
systems with a 750kVA rating inverter are connected to node 5, 6, 
7, 8, 9, 20, 24, 26, 29, 30, and 32. The available active power gen-
eration profiles of these PV are obtained from Pecanstreet [30], 
[31]. We set 𝑐𝑖

p = 3 and 𝑐𝑖
q = 2 in the utility loss functions for 

node 𝑖 ∈ K. The inelastic load profile comes from Open Energy 
Information [32]. All the data are pretreated to have a guaranty of 
1 min sampling rate. As for the IACs, we assume that nodes 2, 9, 
10, 12, 14, 15, and 30 are connected by 300 IACs, while nodes 3, 
6, 7, 17, 21, 25, 28, 31 and 32 are installed with 500 IACs. The 
maximal operating power of IAC is selected in the range of [500, 
800]W with the power factor cos𝜃𝑖,𝑎 = 0.95. The minimal power 
is set as 10% of the maximal power. The equivalent thermal ca-
pacity of the environment is selected in the range of [2000, 3000] 

, The equivalent heat rate is selected in a range of [0.05, 0.08] 
. The ambient temperature is simulated by a function [33], 

given by: 

𝑇amb
𝑡 = 𝑇amb

∆ ∣sin(𝜋𝑡
𝑇

)∣ + 𝑇amb
min , ∀𝑡, (39) 

J/oC
oC/W
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where 𝑇amb
∆ = 4℃ and 𝑇amb

min = 35℃. The temperature setpoint 
is arbitrarily selected from {23,24,25}℃  with a bandwidth 
∆𝑇 = 2℃. Without loss of generality, we set 𝑘𝑖,𝑎 = 1.2, 𝑓𝑖,𝑎 =
0 and 𝑐𝑖,𝑎

AC = 10−5. As for our algorithm, we set the step size to 
0.1. Some predefine parameters are set as 𝑉 = 0.9𝑉 max , 𝜑 =
10−4, and ℎ𝑖,𝑎 = (ℎ𝑖,𝑎

max + ℎ𝑖,𝑎
min)/2. 

To mimic measurements, nonlinear AC power flow equations 
are solved by MATPOWER 7.0 [34], from which the node volt-
ages and power at the substation are measured. In addition, thermal 
parameters 𝐶𝑖,𝑎  and 𝑊𝑖,𝑎  will fluctuate stochastically at each 
time slot in a range of [0.98,1.02] relative to the predefined values. 
Indoor temperatures generated by the ETP model with time-vary-
ing parameters are used as measurements. Thus, voltages, substa-
tion power, and indoor temperatures demonstrated below are all 
measured values from non-linear systems. 

B. Benchmarks 
We use six different strategies to compare with the proposed 

method.  
1) Strategy 1 (S1) operates the ADN without any control. PV 

systems maintain the maximal active power output and IACs op-
erate based on the gap between the current indoor temperature and 
the temperature setpoint to maintain a comfortable indoor temper-
ature, given by: 

𝑠𝑖,𝑎
𝑡 =

⎩
{
⎨
{
⎧ 𝑠𝑖,𝑎

max,   𝑇𝑖,𝑎
m,𝑡 ≥ 𝑇𝑖,𝑎

H ,                             

𝑠𝑖,𝑎
min,   𝑇𝑖,𝑎

m,𝑡 ≤ 𝑇𝑖,𝑎
L ,    ∀𝑡, ∀𝑎 ∈ A𝑖, ∀𝑖 ∈ A  

𝑘𝑖,𝑎
d (𝑇𝑖,𝑎

m,𝑡 − 𝑇𝑖,𝑎
set) + 𝑠𝑖,𝑎

b , 𝑇𝑖,𝑎
L ≤ 𝑇𝑖,𝑎

m,𝑡 ≤ 𝑇𝑖,𝑎
H

, (40) 

where 𝑘𝑖,𝑎
d  is the droop coefficient and 𝑠𝑖,𝑎

b  is the base operating 
power of a given IAC. 

2) Strategy 2 (S2) operates the ADN based on a modified droop 
control scheme. In S2, PV inverters use a linear Q-V droop control 
scheme to decide their VAR outputs with a slope coefficient. Note 
that the value of slope may significantly impact the voltage regu-
lation performance. To strictly testify our proposed method, the 
slope coefficient is manually adjusted to well perform in this case 
study. When there is no tracking requirement at the substation, i.e., 
𝐸𝑡 = 0, PV inverters keep the maximal power outputs in their fea-
sible regions and IACs operate according to (40). In the presence 
of power tracking requirements, i.e., 𝐸𝑡 = 1, the active power at 
each node connected with PV inverters or IACs is regulated with 
a predefined droop coefficient 𝛾: 

𝑝𝑖
𝑡+1 = 𝒫Z𝑖

 𝑡[𝑝𝑖
𝑡+1 − 𝛾(𝑝0,set

𝑡 − 𝑝0
m,𝑡)], ∀𝑖, ∀𝑡. (41) 

In practice, a proper 𝛾 is crucial to the performance of power 
tracking. However, it is rarely practical to get an optimal 𝛾. Multi-
ple values of 𝛾 will be deployed in the following case studies for a 
clear comparison. 

3) Strategy 3 (S3) is based on the greedy optimization, as shown 
in (42). The main discrepancy between S3 and our proposed 
method is that we consider the temperature constraints for IACs in 
a long-term form. However, S3 directly decouples P1 to 𝑇  sub-
problems. The greedy algorithm is shortsighted as it optimizes the 
cost at each time slot without considering the future. To compare 
with our proposed method, the greedy optimization model is run 
in an online distributed form.  

min
{𝐳𝑖

𝑡}𝑖=1
𝑁

∑ 𝑈�̂�
𝑡(𝐳𝑖

𝑡),𝑁
𝑖=1 (42a)  

(13a),(13b),(14a),(14b),(15b)--(15e). (42b) 

4) Strategy 4 (S4) uses the online distributed MPC-based algo-
rithm developed in [17] to optimize the ADN. Similar to LOOD, 
S4 is a look-ahead method while the performance of S4 relies on 
the scale of predicted window size. Different settings of the win-
dow size will be tested. 

5) Strategy 5 (S5) runs the online distributed optimization with-
out considering IACs. Alternatively, IACs operate according their 
own policy, i.e., (40). This benchmark is used to verify the perfor-
mance of integrating IACs into the ADN coordination.  

6) Except for the above five strategies, we also consider solving 
the optimization problems in a centralized manner to provide 
benchmarks for the validation of the performance analysis in Sec-
tion IV. Even though the solution to P1  represents the theoretic 
optimal result, it is hard to obtain it directly due to the curse of 
dimensionality. Alternatively, we can use the MPC-based method 
with a full window size (𝑇 ) to derive the solution that is very close 
to the optimum Φ∗̅̅̅ ̅̅ ̅̅ of P1 since the window size is large enough to 
sight the entire time horizon. Also, P2

𝑡  is solved for all 𝑡 to get the 
optimizer Φ𝑙

∗̅̅̅ ̅̅ ̅̅. 
Remark 9 (Future Prediction): To strictly testify the proposed 
method, we assume that the future prediction including the refer-
ence setpoint at the substation and inelastic loads used in MPC ap-
proach (𝑆4) is accurate. On the other hand, it is worth emphasizing 
that our proposed algorithm only relies on information that is avail-
able at present and does not need any future prediction. 

C. Results 
1) Voltages and power at the substation 

First of all, we test the node voltage under the control of S1, S2, 
and the proposed LOOD method. We illustrate the voltage magni-
tude at node 10, 12, and 15 in Fig. 3. Following S1, voltage mag-
nitudes between 10:00 -- 16:00 exceed the upper limit due to lack-
ing any control. S2 is effective for maintaining voltage security to 
some extent, but one oscillation of voltage occurs at 12:00. In prac-
tice, the selection of 𝛾 impacts the performance of S2 obviously. 
We set 𝛾 = 0.03 in this test since it performs relatively better than 
any other settings. Too large coefficients could bring about oscil-
lations and even overshoots, while too small ones cannot effec-
tively and quickly regulate both the voltage and power. To get an 
optimal coefficient usually calls for the global and detailed infor-
mation of these customer-owned devices. In contrast, the proposed 
LOOD method outperforms both S1 and S2 as the voltage magni-
tudes maintain in an acceptable and relatively smooth region. No-
tably, the flat voltage profiles near to the upper limit are obtained 
before the tracking requirements come (before 12:00) since it is 
economically efficient. In the presence of tracking requirements 
(after 12:00), the curtailment of PV occurs to support the tracking 
performance. It can be seen that the voltages decrease accordingly. 

Fig. 4 shows the active power at the substation. To test the 
power tracking ability of these strategies, a reference power set-
point from 12:00 to 19:00 is applied, including a sudden increasing 
(12:00 -- 13:00), fast ramping up or down (13:00 -- 18:00) and 
keeping flat output (12:00 -- 13:00, 18:00 -- 19:00). From 12:00 to 
19:00, LOOD can guarantee an effective power tracking except for 
a disturbance that is caused by the sudden change of available PV 
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outputs. In practice, it is hard to reveal this disturbance beforehand 
[35], and the sudden change will not cause a huge impact to the 
whole system. Conversely, the tracking ability of S2 depends on a 
proper 𝛾. As illustrated in Fig. 4, when 𝛾 = 0.03, the tracking per-
forms well. However, undershoot (𝛾 = 0.003), oscillation (𝛾 =
0.06), and overshoot (𝛾 = 0.09) occur if 𝛾 is not well set. Because 
S3 -- S6 are variants of LOOD, they perform well on the voltage 
security and power tracking. 

 
Fig. 3.   Node voltage magnitude.  

 
Fig. 4.  Active power at the substation. 

2) Social Utility loss 
As for minimizing the utility loss, we compare the performances 

of LOOD and several benchmarks, as shown in Fig. 5. Intuitively, 
S2 brings about the largest utility loss due to the absence of con-
sideration of optimality. S3 is a variant of our method, thus it also 
well assures the voltage constraints and power tracking require-
ment. However, the utility loss caused by S3 is obviously larger 
than the time-average utility loss caused by LOOD. Although S3 
takes into account the flexibility of IAC, the greedy optimization 
is shortsighted and potential to employ the flexibility of IACs ex-
cessively. When the tracking signal keeps for a long time, IACs 
cannot respond to it sustainably. Compared with S3, the online 
MPC-based method (S4) has a better performance on minimizing 
the utility loss. Note that the performance of S4 relies on the selec-
tion of predicted window size. For example, when the window size 
is set as 5min, the utility loss of S4 is superior to that of S3 but 
still larger than LOOD. If the window size augments to 60min, the 
curve of utility loss caused by S4 almost coincides with that of 
LOOD, see the green and red curves in Fig. 5. In practice, a larger 
window size may provide a better control performance by consid-
ering the future indoor temperature of a longer time horizon. How-
ever, the increasing computational complexity and forecast re-
quirements make the local problem extremely complicated for the 
HEMS. Unlike the MPC-based method, the proposed algorithm 

only needs algebraic operations based on current measurements 
without forecast, which can ensure the practical employment on 
the HEMS with limited computational ability.   

Then, we demonstrate the magnitudes of the optimality gaps be-
tween the optimizer of LOOD and the original problem P1 along 
with its time-coupling relaxed variant P2

𝑡 . We first mark the opti-
mal social utility loss of P1 and P2

𝑡  in Fig. 6, i.e., the point 𝑂1 and 
𝑂2. The social utility loss caused by LOOD is marked as 𝑂3. It is 
observed that Φ∗̅̅̅ ̅̅ ̅̅ < Φ𝑙

∗̅̅̅ ̅̅ ̅̅ < ΦLOOD̅̅̅̅̅̅̅̅̅̅̅̅̅̅, which corresponds to the opti-
mality gaps caused by the time decoupled reformulation (P1 
to P2

𝑡 , ∀𝑡) and online distributed dual ascent recursion (P2
𝑡  to 

LOOD), respectively. Notably, the actual optimality gap, i.e., 
length of  |𝑂1𝑂3|, accounts for 10.9% of the magnitude of the 
ideal optimum Φ∗̅̅̅ ̅̅ ̅̅, which means the proposed method achieves 
about 90% near-optimality of the original problem  P1. Then, ac-
cording to the upper bound of ΦLOOD̅̅̅̅̅̅̅̅̅̅̅̅̅̅  characterized in Theorem 3, 
we can estimate the magnitude of 𝐵𝑉 + 𝑁𝑌𝐿 and locate the point 
𝑂4. The analyzed upper bound represents the worst-case of the so-
cial utility loss caused by the proposed method. Since the result in  
Theorem 3 is conservative, the distance between the actual ΦLOOD̅̅̅̅̅̅̅̅̅̅̅̅̅̅ 
and its upper bound, i.e., the length of |𝑂3𝑂4|, is large enough, 
which guarantees the practical performance on minimizing the so-
cial utility loss of the proposed algorithm. 

 
Fig. 5.   Dynamic of the time-average utility loss. 

 
Fig. 6.  Optimum of LOOD compared with the ideal centralized results. 

 
Fig. 7.  Curtailment and reactive power generation of PV inverters. 
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S6 is another variant of LOOD, where IACs are not coordinated 
but operate according their own local controllers. As illustrated in 
Fig. 7, LOOD can reduce the curtailment and reactive power ab-
sorbing of PV inverters apparently than S6. The reason is that the 
voltage regulations and power tracking only rely on PV inverters 
in S6, while the flexibilities of numerous IACs are unlocked in 
LOOD. If we increase the comfortable temperature bandwidth 
(∆𝑇 ) and IACs can get more flexibility accordingly, the perfor-
mance of LOOD can be enhanced. In practice, residents cannot 
accept too large temperature bandwidths, so we need to control the 
tradeoff in the practical deployment. 

3) Dynamics of individual DERs and incentive signals 
We zoom in to examine the dynamics of individual DERs. The 

power curtailment and reactive power output with respect to the 
pertinent incentive signals are demonstrated in Fig. 8 and Fig. 9, 
respectively. In response to the negative incentive signals, positive 
curtailment and negative reactive power output can be observed. 
Even though the locations of nodes impact the incentives accord-
ing to their update rules, the curves of incentive signals 𝛼𝑡 for node 
5 almost coincides with that of node 32 during 14: 00 -- 19: 00. 
Actually, incentives are composed by regulation requirements of 
both voltage and power. When the voltage regulations are domi-
nant in the formulation of incentives (before 14: 00), the diver-
gency of incentives between nodes is obvious. Differently, if the 
incentives mainly come from the substation power regulation 
(14: 00 -- 19: 00), the incentives for all nodes tend to be consistent 
since the matrices M and 𝐍 both have similar entries, respectively. 

 
Fig. 8.  Incentive signals (𝛼𝑡) and power curtailment of PV inverters. 

 
Fig. 9  Incentive signals (𝛽𝑡) and reactive power output of PV inverters. 

Fig. 10 shows the dynamics of indoor temperature at node 2 
(300 IACs), node 7 (500 IACs), and node 32 (500 IACs). Although 
the temperature constraints are relaxed to a time-average form, it 

can obey the original strict temperature box constraints as we set 
the coefficients 𝑉  and ℎ𝑖,𝑎 according to the conducted ranges. In-
tuitively, the temperature dynamics match the regulation require-
ments. For instance, IACs will raise the operating power to cool 
the rooms from 12:00~14:00, where the setpoint reference at sub-
station requires the ADN to increase the actual power consumption. 
Also, heterogeneous temperature setpoints will not affect the per-
formance of the proposed method. 

 
Fig. 10.  Indoor temperature at Node 2, Node 7, and Node 32. 

To further examine the impact of the selection of 𝑉  on the in-
door temperature, we define a metric to assess the violations of the 
temperature constraints, given by: 

Vio𝑖,𝑎 = ∑ [𝒫ℝ+
(𝑇𝑖,𝑎

m,𝑡-𝑇𝑖,𝑎
H ) + 𝒫ℝ+

(𝑇𝑖,𝑎
L -𝑇𝑖,𝑎

m,𝑡)], ∀𝑎, ∀𝑖𝑇
𝑡=1 . (43)  

 The metric Vio𝑖,𝑎 characterizes the violations of the upper and 
lower temperature limits for an individual IAC. To evaluate the 
overall performance, the average violations over all the IACs are 
denoted by 𝑉𝑖𝑜, given by: 

Vio =
∑ ∑ Vio𝑖,𝑎

𝐴𝑖
𝑎=1

𝑁
𝑖=1

∑ 𝐴𝑖
𝑁
𝑖=1

. (44) 

Then, we select distinct value of 𝑉  to examine the violations, 
demonstrated in Table II. 

TABLE II 
VIOLATIONS OF INDOOR TEMPERATURE CONSTRAINTS (℃) 

V ∆𝑇 = 1 ∆𝑇 = 2 ∆𝑇 = 3 ∆𝑇 = 4 
0.9𝑉 max 0 0 0 0 

𝑉 max 0 0.0003 0 0 

1.2𝑉 max 5.723 4.528 4.178 4.376 

1.5𝑉 max 29.368 43.377 58.111 72.612 

It can be observed that the violations can be well avoided if we 
select a proper 𝑉  according to the characterized bounds in Eq. 
(35c). However, if the selection of 𝑉  exceeds the given 𝑉 max, the 
actual indoor temperature obviously violates the satisfied limits no 
matter how the acceptable bandwidth of the temperature is set. 
Therefore, the performance of the proposed method can be ensured 
based on the analytical characterization of the pertinent coeffi-
cients. 

4) Performance of the filter of incentive signals  
We further discuss the power fluctuation at the substation under 

different 𝜙. We define: 

𝜗 = 1
𝑡2−𝑡1+1 ∑ (𝑝0

m,𝜏+1 − 𝑝0
m,𝜏)

2𝑡2
𝜏=𝑡1

(45)  
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to quantify the so-termed power fluctuation from time slot 𝑡1 to 𝑡2. 
We divide the day into 7 fragments according to the power track-
ing signals. As shown in Table III, the value of 𝜗 is obviously 
smaller when 𝜙 = 0.1 than 𝜙 = 0 because incentive signals are 
smoothed by a filter and the DERs will not respond to the signals 
too drastically. When we increase 𝜙 to 0.2 and 0.4, 𝜗 continues to 
diminish since the enhanced filtering performances. Nevertheless, 
Corollary 1 has illustrated that 𝜙 will bring a fix discrepancy be-
tween actual solvers and optimal solvers. Thus, a relatively small 
ϕ can not only help smooth the power at the substation and also 
ensure the economic efficiency of the algorithm. 

TABLE III 
POWER FLUCTUATION (𝜗) AT SUBSTATION 

 8~12 12~13 13~14 14~15 15~16 16~18 18~19 

𝜙 = 0 0.0019 0.0023 0.0036 0.0015 0.1098 0.0006 0.0005 

𝜙 = 0.1 0.0012 0.0017 0.0035 0.0013 0.1087 0.0006 0.0004 

𝜙 = 0.2 0.0011 0.0015 0.0032 0.0011 0.1062 0.0005 0.0002 

𝜙 = 0.4 0.0010 0.0014 0.0031 0.0010 0.1057 0.0005 0.0002 

5) Computational time 

Finally, the advantage of computation is corroborated. We run 
the algorithms with MATLAB on one PC with i5 CPU (2.3GHz) 
and 8GB RAM. Total simulation time is counted to assess the 
overall consumptions. To mimic the performance of parallel com-
putation, the total simulation time is divided by the nodes and time 
horizon, i.e, 𝑁 × 𝑇 , and the average time is obtained. Note that 
the average time can represent the actual time request for each 
HEMS for computing setpoints of governed DERs. 

 
Fig. 11.  Computation time of the proposed method on different test feeders. 

Firstly, we increase the scale of the test systems with more nodes 
and DERs. As shown in Fig. 11, the total simulation time raises up, 
but the average time will not be influenced by the increasing of 
nodes. For example, nearly 30,000 devices are coordinated in the 
123-node test feeder, while only 92ms is required for the node at 
each time slot. Owing to the presence of distributed algebraic solv-
ers, the proposed LOOD is pragmatic to large-scale ADN with nu-
merous DERs.  

However, the MPC-based method is more vulnerable to the 
computation time. Considering the 33-node test feeder, the com-
putation time under different settings of window size is illustrated 
in Fig. 12. It is observed that both simulation and average time 
augments apparently if a larger window size is used. Based on the 
results in Fig. 5, to compete with LOOD on the performance of 
utility loss, each node needs to spend 10 times longer if S4 is ap-
plied as the window size is supposed to be 60min. In addition, 
more efforts have to be paid on the forecast if a larger window size 

is used. 

 
Fig. 12.  Computation time of MPC-based method. 

VI. CONCLUSION AND FUTURE WORKS 
This paper proposes an online distributed optimization algorith-

mic framework for ADNs to track a setpoint reference at the sub-
station while concurrently minimizing the utility loss and assuring 
the security of voltages. Unlike most existing optimization meth-
ods for ADNs, the proposed LOOD algorithm can generate the 
setpoints for PV inverters and IACs immediately only relying on 
current measurements and environment conditions. In particular, 
the time-coupling constraints for IACs are decoupled in an online 
optimization framework by the Lyapunov optimization technique. 
Outperform most of the state-of-the-art methods for coordinating 
the networked DERs, the proposed algorithm has several advanta-
geous features in the practical deployment, including: 

1) Computationally affordable. The developed approach uses a 
distributed algebraic update to compute the next round decisions 
for both the ADN operator and customers, see Eq. (31), (33), and 
(34). This thus makes the approach scalable to large networks with 
numerous DERs.  

2) Economically efficient. Due to the well relaxation of the 
time-coupling constraints, the proposed method achieves a near 
optimality of the ideal global optimizer, while getting a more eco-
nomic result than other online solvers such as the greedy optimi-
zation and MPC-based algorithm.  

3) Prediction-free. The proposed method does not rely on the 
future prediction that is essential for most existing methodologies 
including MPC, while the proposed algorithm still achieves results 
that are very close to the optimum. 

4) Customer-oriented. To coordinate customer-owned assets, a 
proper incentive scheme is developed in lieu of the direct control. 
The local problem solved by each customer is a standard welfare 
maximization problem. Also, the incentive generator considers a 
first-order filter to alleviate high fluctuations of incentive signals 
and corresponding responses of customers.  

The numerical test uses six different online strategies to be the 
benchmarks, while the results corroborate that the proposed 
method can save significant computational complexity and avoid 
the prediction of future information that is essential for other online 
controllers like MPC. Also, the proposed LOOD is analytically 
characterized and numerically tested to achieve a near optimality 
of the theoretical solution, for example 90% in the case study. 

In this work, the ADNs are assumed to be three-phase balances. 
Thus, future work will extend our algorithm to a three-phase un-
balanced case. Besides, the parameters of IACs model are pre-
sumed to be estimated beforehand and time-invariant in the oper-
ation. An online estimator-embedded optimization framework for 
networked DERs will be further studied. In addition, ongoing ef-
forts are developing controllers for networked DERs when the 

33-node 69-node 85-node 123-node
Test Feeder

20

40

60

80

Si
m

ul
at

io
n 

T
im

e 
(s

) IACs: 8600 
PV: 17     

IACs: 16000
PV: 34     

IACs: 20000 
PV: 42      

IACs: 29200
PV: 61     

88

90

92

94

96

98

100

A
ve

ra
ge

 T
im

e 
(m

s)

5min10min 30min 60min
Window Size

500

1000

1500

2000

2500

Si
m

ul
at

io
n 

T
im

e 
(s

)

200

400

600

800

1000

1200

A
ve

ra
ge

 T
im

e 
(m

s)



 13 

communication system is partially or totally down. 
 

APPENDIX A 
PROOF OF LEMMA 1 

Proof: According to the definition of the virtual queue and Lya-
punov drift function, we have: 
    1

𝑉 ∑ ∆(𝐇𝑖
𝑡)𝑁

𝑖=1 + E(∑ �̂�𝑖
𝑡𝑁

𝑖=1 ∣𝐇𝑖
𝑡)  

 = 1
2𝑉 ∑ {E[||𝐇𝑖

𝑡+1||2 − ||𝐇𝑖
𝑡||2]|𝐇𝑖

𝑡}𝑁
𝑖=1 + E(∑ �̂�𝑖

𝑡𝑁
𝑖=1 ∣𝐇𝑖

𝑡) 

= 1
2𝑉 ∑ {E[∑ [(𝜉𝑖,𝑎

+,𝑡 − 𝜉𝑖,𝑎
−,𝑡𝐴𝑖

𝑎=1 )2 +𝑁
𝑖=1   

2𝐻𝑖,𝑎
𝑡 (𝜉𝑖,𝑎

+,𝑡 − 𝜉𝑖,𝑎
−,𝑡)]|𝐇𝑖

𝑡]} + E(∑ 𝑈�̂�
𝑡𝑁

𝑖=1 ∣𝐇𝑖
𝑡)         

≤ 1
2𝑉 ∑ ∑ (𝜉𝑖,𝑎

−,max − 𝜉𝑖,𝑎
+,min)

2𝐴𝑖
𝑎=1

𝑁
𝑖=1   

+ 1
𝑉 E[∑ ∑ 𝐻𝑖,𝑎

𝑡 (𝜉𝑖,𝑎
+,𝑡, −𝜉𝑖,𝑎

−,𝑡)|𝐇𝑖
𝑡𝐴𝑖

𝑎=1
𝑁
𝑖=1 ] + E(∑ �̂�𝑖

𝑡𝑁
𝑖=1 ∣𝐇𝑖

𝑡). (46)  
Then, we define 𝐵 = 1

2 ∑ ∑ (𝜉𝑖,𝑎
−,max − 𝜉𝑖,𝑎

+,min)
2𝐴𝑖

𝑎=1
𝑁
𝑖=1 . Thus, 

we can get Lemma 1. 

APPENDIX B 
PROOF OF THEOREM 1 

With Lemma 1 and theorem 4.8 in [24], we derive Φ𝑙
∗̅̅̅ ̅̅ ̅̅ ≤ Φ𝑟

∗̅̅̅̅ ̅̅ ̅ +
𝐵
𝑉  if all the random variables in {Θ}𝑡 are independent identically 
distributed (i.i.d.). The result is robust to non-i.i.d., nonergodic sit-
uations as proved in theorem 4.13 in [24]. Concurrently, we have 
Φ𝑟

∗̅̅̅̅ ̅̅ ̅ ≤ Φ∗̅̅̅ ̅̅ ̅̅as illustrated in Remark 3. Thus, we can obtain. Φ𝑙
∗̅̅̅ ̅̅ ̅̅ ≤

Φ∗̅̅̅ ̅̅ ̅̅ + 𝐵
𝑉 . 

APPENDIX C 
PROOF OF LEMMA 4 

First of all, we recall the definition of the utility loss function   
𝑈𝑖

𝑡: ℝ𝐴𝑖+2 → ℝ1 . The gradient function of 𝑈𝑖
𝑡  is denoted by 

∇𝑈𝑖
𝑡: ℝ𝐴𝑖+2 → ℝ𝐴𝑖+2. Then, we denote the inverse function of 

∇𝑈𝑖
𝑡 by (∇𝑈𝑖

𝑡)−1: ℝ𝐴𝑖+2 → ℝ𝐴𝑖+2. Assume 𝐱1 and 𝐱2 are de-
fined in the feasible set of the function ∇𝑈𝑖

𝑡. Let 𝐲1 = ∇𝑈𝑖
𝑡(𝐱1) 

and 𝐲2 = ∇𝑈𝑖
𝑡(𝐱2) , we have  𝐱1 = (∇𝑈𝑖

𝑡)−1(𝐲1)  and 𝐱2 =
(∇𝑈𝑖

𝑡)−1(𝐲2). Since 𝑈𝑖
𝑡 is 𝜎-strongly convex (see Assumption 1), 

we have: 

(𝐱1 − 𝐱2)T[∇𝑈𝑖
𝑡(𝐱1) − ∇𝑈𝑖

𝑡(𝐱2)] ≥ 𝜎||𝐱1 − 𝐱2||2. (47) 

By substituting 𝐲1 and 𝐲2 into (47), we will get: 

(𝐲1 − 𝐲2)T[(∇𝑈𝑖
𝑡)−1(𝐲1) − (∇𝑈𝑖

𝑡)−1(𝐲2)]  
≥ 𝜎||(∇𝑈𝑖

𝑡)−1(𝐲1) − (∇𝑈𝑖
𝑡)−1(𝐲2)||2. (48) 

Hence,  

||(∇𝑈𝑖
𝑡)−1(𝐲1) − (∇𝑈𝑖

𝑡)−1(𝐲2)|| ≤ 1
𝜎 ||𝐲1 − 𝐲2||. (49)  

So, (∇𝑈𝑖
𝑡)−1 is 1𝜎 -Lipschitz continuous. 

APPENDIX D 
PROOF OF THEOREM 2 

Before proving the Theorem 2, we have the following reasoning: 

‖𝐝𝑡,∗ − 𝐝𝑡+1‖2  

=(a) ||𝒫ℝ+
[𝐝𝑡,∗ + 𝛿∇𝐷𝑡(𝐝𝑡,∗)] − 𝒫ℝ+

[𝐝𝑡 + 𝛿∇𝐷m,𝑡(𝐝𝑡)]||2  

≤(b) ||𝐝𝑡,∗ − 𝐝𝑡 + 𝛿[∇𝐷𝑡(𝐝𝑡,∗) − ∇𝐷𝑡(𝐝𝑡) +  

      ∇𝐷𝑡(𝐝𝑡) − ∇𝐷m,𝑡(𝐝𝑡)]||2  

≤(c) ||𝐝𝑡,∗ − 𝐝𝑡||2 + 2𝛿(𝐝𝑡,∗ − 𝐝𝑡)𝑡[∇𝐷𝑡(𝐝𝑡,∗) − ∇𝐷𝑡(𝐝𝑡)]  

      +𝛿2||∇𝐷𝑡(𝐝𝑡,∗) − ∇𝐷𝑡(𝐝𝑡)||2 + (𝛿𝑒)2  

≤(d) (1 − 2𝛿𝜎𝐷𝐿𝐷
𝜎𝐷+𝐿𝐷

)||𝐝𝑡,∗ − 𝐝𝑡||2 + (𝛿𝑒)2  

+(𝛿2 − 2𝛿
𝜎𝐷+𝐿𝐷

)||∇𝐷𝑡(𝐝𝑡,∗) − ∇𝐷𝑡(𝐝𝑡)||2. (50)  

where ∇𝐷m,𝑡(𝐝𝑡) = 𝑔m,𝑡(𝐳𝑡) − 𝜑𝐝𝑡 is the measurement-ena-
bled gradient that is used in LOOD. The equality (a) comes from 
the dual variables update policy; (b) is due to the non-expansive-
ness property of the projection operator; (c) considers Assumption 
3. For inequality (d), we consider the fact that:  

(𝐝𝑡,∗ − 𝐝𝑡)T[∇𝐷𝑡(𝐝𝑡,∗) − ∇𝐷𝑡(𝐝𝑡)] ≤ −( 𝜎𝐷𝐿𝐷
𝜎𝐷+𝐿𝐷

||𝐝𝑡,∗ −
𝐝𝑡||2  

+ 1
𝜎𝐷+𝐿𝐷

||∇𝐷𝑡(𝐝𝑡,∗) − ∇𝐷𝑡(𝐝𝑡)||2).                     (51)  

Eq. (51) holds because 𝐷𝑡(⋅) is 𝜎𝐷-strongly concave and its gra-
dient function is 𝐿𝐷- Lipschitz continuous (see Lemma 5). The 
proof of Eq. (51) can be referred to Theorem 2.1.12 in [26]. 

Then, if  0 < 𝛿 ≤ 1
𝜎𝐷+𝐿𝐷

 holds, the last term of (50) must be 
non-positive. So, we can obtain： 

||𝐝𝑡,∗ − 𝐝𝑡+1|| ≤ √𝜅2||𝐝𝑡,∗ − 𝐝𝑡|| + (𝛿𝑒)2            

≤ 𝜅||𝐝𝑡,∗ − 𝐝𝑡|| + 𝛿𝑒, (52) 

where 𝜅=√1−2𝛿𝜎𝐷𝐿𝐷
𝜎𝐷+𝐿𝐷

. It is readily to obtain that 0 ≤ 𝜅 ≤ 1. 
Then, we have: 

||𝐝𝑡+1 − 𝐝𝑡+1,∗||  

≤(a) ||𝐝𝑡+1 − 𝐝𝑡,∗|| + ||𝐝𝑡,∗ − 𝐝𝑡+1,∗||  

≤(b) 𝜅||𝐝𝑡,∗ − 𝐝𝑡|| + ∆𝑑 + 𝛿𝑒  

≤(c) 𝜅𝑡||𝐝𝑡=0,∗ − 𝐝𝑡=0|| + ∑ 𝜅𝜏𝑡
𝜏=0 (∆𝑑 + 𝛿𝑒)  

≤(d) 𝜅𝑡||𝐝𝑡=0,∗ − 𝐝𝑡=0|| + 1−𝜅𝑡

1−𝜅 (∆𝑑 + 𝛿𝑒)  

≤(e) 𝜅𝑡(||𝐝𝑡=0,∗ − 𝐝𝑡=0|| − ∆𝑑
1−𝜅)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

:=ℏ𝑡 (transient term)

+ 1
1−𝜅 (∆𝑑 + 𝛿𝑒)⏟⏟⏟⏟⏟
:=ℓ (𝑓𝑖𝑥𝑒𝑑 term)

.       (53)  

In (53), the inequality (a) comes from the dual variables update 
policy in LOOD and the triangle inequality; (b) is based on (52) 
and the variation of optimal dual variables; (c) is resulted from us-
ing triangle inequality repeatedly. According to (53) the first term 
of the reasoning result, denoted by ℏ𝑡 , is transient that will vanish 
to be 0 when 𝑡 → ∞ due to the fact that 0 ≤ 𝜅 ≤ 1. The second 
term denoted by ℓ is fixed. 

APPENDIX E 
PROOF OF COROLLARY 1 

Proof: 
Because the coordination signals used in LOOD are incentives 

generated by the incentive function 𝑐(𝐝𝑡): ℝ+
2𝑁+2 → ℝ2𝑁  in lieu 

of dual variables, we first characterize the convergence of incen-
tives. We collect the incentives at each node by 𝐜𝑖

𝑡 = [𝛼𝑖
𝑡, 𝛽𝑖

𝑡]T 
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with a vector form 𝐜𝑡 compactly denoting the incentives for all the 
nodes. Then, the discrepancy between optimal incentives 𝐜𝑡+1,∗ 
and the online created ones 𝐜𝑡+1 in LOOD is bounded by: 

||𝐜𝑡+1 − 𝐜𝑡+1,∗|| = ||(1 − 𝜙)𝑐(𝐝𝑡+1) + 𝜙𝑐(𝐝𝑡) − 𝑐(𝐝𝑡+1,∗)||  

≤(a) (1 − 𝜙)||𝑐(𝐝𝑡+1) − 𝑐(𝐝𝑡+1,∗)|| + 𝜙||𝑐(𝐝𝑡) − 𝑐(𝐝𝑡+1,∗)||  

≤(b) (1 − 𝜙)𝐿𝑐(ℏ𝑡 + ℓ) + 𝜙𝐿𝑐||(𝐝𝑡 − 𝐝𝑡+1,∗)||  

≤(c) (1 − 𝜙)𝐿𝑐(ℏ𝑡 + ℓ) + 𝜙𝐿𝑐(ℏ𝑡−1 + ℓ + ∆𝑑)  

=(d) (1 − 𝜙)𝐿𝑐ℏ𝑡 + 𝜙𝐿𝑐ℏ𝑡−1 
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

transient term

+ 𝐿𝑐(ℓ + 𝜙∆𝑑)⏟⏟⏟⏟⏟ .
fixed term

             (54)  

The inequality (a) uses triangle inequality; (b) is according to 
Lipschitz continuity of the function 𝑐(𝐝𝑡); (c) comes from the re-
sults of Theorem 2. Similar to arguments in the proof of Theorem 
2, the resultant two terms comprise a transient term that vanishes 
when 𝑡 → ∞.  

Then, we continue to characterize the convergence of primal 
variables. According to the first-order condition, the solver of the 
local problem PL,𝑖

𝑡  can be represented by 𝒫Z𝑖
 𝑡{(∇𝑈𝑖

𝑡)−1(𝐜𝑖
e,𝑡)}, 

where 𝐜𝑖
e,𝑡+1 is an extended version of the pair of incentives, such 

that 𝐜𝑖
e,𝑡 = [𝛼𝑖

𝑡, 𝛽𝑖
𝑡, 𝛼𝑖

𝑡 + 𝜌𝑖,1𝛽𝑖
𝑡, ⋯ , 𝛼𝑖

𝑡 + 𝜌𝑖,𝐴𝑖
𝛽𝑖

𝑡]T . Thus, we 
have:  

||𝐳𝑖
𝑡+1 − 𝐳𝑖

𝑡+1,∗||  

=(a) ||𝒫Z𝑖
 𝑡+1{(∇𝑈𝑖

𝑡+1)−1(𝐜𝑖
e,𝑡+1)} −

𝒫Z𝑖
 𝑡+1{(∇𝑈𝑖

𝑡+1)−1(𝐜𝑖
e,𝑡+1,∗)}||  

≤(b) ||(∇𝑈𝑖
𝑡+1)−1(𝐜𝑖

e,𝑡+1) − (∇𝑈𝑖
𝑡+1)−1(𝐜𝑖

e,𝑡+1,∗)||  

≤(c) 1
𝜎 ||𝐜𝑖

e,𝑡+1 − 𝐜𝑖
e,𝑡+1,∗|| ≤(d) 1+𝐴𝑖

𝜎 ||𝐜𝑖
𝑡+1 − 𝐜𝑖

𝑡+1,∗||  

≤(e) 1+𝐴𝑖
𝜎 [(1 − 𝜙)𝐿𝑐ℏ𝑡 + 𝜙𝐿𝑐ℏ𝑡−1 ]⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

transient term

+ 𝐿𝑐(1+𝐴𝑖)
𝜎 (ℓ + 𝜙∆𝑑)⏟⏟⏟⏟⏟⏟⏟ .
:=𝑌𝑖 (fixed term)

(55)  

The equality (a) is according to the optimal condition of the lo-
cal problem PL,𝑖

𝑡 ; (b) comes from the non-expansiveness property 
of the projection operator and (c) considers Lemma 4; (e) uses the 
results of Eq. (54). The resultant two terms also comprise a tran-
sient term that will vanish when 𝑡 → ∞. Therefore, with the fixed 
term denoted by 𝑌𝑖, we can derive Corollary 1. 

APPENDIX F 
PROOF OF THEOREM 3 

Proof: 
First of all, we can characterize the difference between the two 

optimizers generated by LOOD and P2
𝑡  at each time slot: 

||ΦLOOD,𝑡 − Φ𝑙
𝑡,∗|| = || ∑ 𝑈𝑖

𝑡(𝐳𝑖
𝑡)𝑁

𝑖=1 − ∑ 𝑈𝑖
𝑡(𝐳𝑖

𝑡,∗)𝑁
𝑖=1 ||  

≤ ∑ ||𝑈𝑖
𝑡(𝐳𝑖

𝑡) − 𝑈𝑖
𝑡(𝐳𝑖

𝑡,∗)𝑁
𝑖=1 || ≤ 𝑁𝐿||𝐳𝑖

𝑡 − 𝐳𝑖
𝑡,∗||. (56)  

Thus, 
ΦLOOD̅̅̅̅̅̅̅̅̅̅̅̅̅̅ − Φ𝑙

𝑡,∗̅̅̅̅̅ ̅̅̅̅̅ =(a)  lim
𝑇 →∞

1
𝑇 ∑ (ΦLOOD,𝑡 − Φ𝑙

𝑡,∗)𝑇
𝑡=1   

≤(b) 𝑁𝐿 ( lim
𝑇 →∞

1
𝑇 ∑ (||𝐳𝑖

𝑡 − 𝐳𝑖
𝑡,∗||)𝑇

𝑡=1 ≤(c) 𝑁𝐿𝑌𝑖 ≤(d) 𝑁𝐿𝑌 , (57)  
where the equality (a) is based on the definition of time-average of 
a variable; inequality (b) and (c) come from Eq. (56)  and 

Corollary 1, respectively. Then, due to  Theorem 1 that Φ𝑙
∗ ≤

Φ∗̅̅̅ ̅̅ ̅̅ + 𝐵
𝑉 , we have 

ΦLOOD̅̅̅̅̅̅̅̅̅̅̅̅̅̅ ≤ Φ∗̅̅̅ ̅̅ ̅̅ + 𝐵
𝑉 + 𝑁𝐿𝑌 . (58)  
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